精英家教网 > 高中数学 > 题目详情
19.已知椭圆的焦距为6,椭圆上的点到两个焦点的距离之和为10,求椭圆的标准方程.

分析 由题意当焦点在x轴时,可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),已知2c=6,2a=10,可得c,a,b=$\sqrt{{a}^{2}-{b}^{2}}$,即可得出椭圆的标准方程,同理可得:当焦点在y轴时的椭圆的标准方程.

解答 解:由题意当焦点在x轴时,可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
∵2c=6,2a=10,可得c=3,a=5,b=$\sqrt{{a}^{2}-{b}^{2}}$=4,
∴椭圆的标准方程为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.
同理可得:当焦点在y轴时,可得椭圆的标准方程为:$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{16}=1$.
综上可得椭圆的标准方程为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$,$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{16}=1$.

点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0)则数列{xn}的前2016项的和S2016为(  )
A.671B.670C.1342D.1344

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若不等式x2+ax+1≥0对一切x∈(0,$\frac{1}{2}]$恒成立,则a的取值范围是[-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.定义在(0,+∞)上的函数f(x)满足,对于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)求f(1)、的值;
(2)证明f(x)在区间(0,+∞)上为增函数;
(2)若f(2)=1,解关于x的不等式f(x)+f(x-3)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知ab>0,求证:$\frac{b}{a}$+$\frac{a}{b}$≥2,并推导出式中等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax5+bx3+cx+1,且f(3)=4,求f(-3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知${a}^{-\frac{1}{2}}$+${a}^{\frac{1}{2}}$=3,求下列各式的值.
(1)a+a-1
(2)a-2+a2
(3)$\frac{{a}^{\frac{1}{2}}{+a}^{-\frac{1}{2}}}{{a}^{\frac{1}{2}}{-a}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知六边形ABCDEF的三对对边都互相平行,并且$\overrightarrow{FC}$=2$\overrightarrow{AB}$=2$\overrightarrow{DE}$,又设$\overrightarrow{AB}$=$\overrightarrow{α}$,$\overrightarrow{BC}$=$\overrightarrow{β}$,求$\overrightarrow{CE}$和$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合M={x|x2-7x+10≤0},N={x|x2-(2-m)x+5-m≤0},且N⊆M,求实数m的取值范围.

查看答案和解析>>

同步练习册答案