精英家教网 > 高中数学 > 题目详情

(福建卷文20)已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+,求证:bn       ·bn+2b2n+1.

本小题考查等差数列、等比数列等基本知识,考查转化与化归思想,推理与运算能力.

解法一:

(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,

所以数列{an}是以1为首项,公差为1的等差数列.

an=1+(a-1)×1=n.

(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n.

bn=(bn-bn-1)+(bn-1-bn-2)+­­­­­­­­­­­···+(b2-b1)+b1

=2n-1+2n-2+···+2+1==2n-1.

因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2

=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)

=-5·2n+4·2n

=-2n<0,

所以bn·bn+2<b,

解法二:(Ⅰ)同解法一.

(Ⅱ)因为b2=1,

bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b

            =2n+1·bn-1-2n·bn+1-2n·2n+1

=2nbn+1-2n+1

=2nbn+2n-2n+1

=2nbn-2n

=…

=2nb1-2)

=-2n〈0,

所以bn-bn+2<b2n+1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(福建卷文20)已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+,求证:bn       ·bn+2b2n+1.

查看答案和解析>>

同步练习册答案