精英家教网 > 高中数学 > 题目详情
在△ABC中,若sinA:sinB:sinC=7:8:13,则C=
 
度.
分析:利用正弦定理可将sinA:sinB:sinC转化为三边之比,进而利用余弦定理求得cosC,故∠C可求.
解答:解:∵由正弦定理可得sinA:sinB:sinC=a:b:c,
∴a:b:c=7:8:13,
令a=7k,b=8k,c=13k(k>0),
利用余弦定理有cosC=
a2+b2-c2
2ab
=
49k2+64k2-169k2
112k2
=-
1
2

∵0°<C<180°,
∴C=120°.
故答案为120.
点评:此题在求解过程中,先用正弦定理求边,再用余弦定理求角,体现了正、余弦定理的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若sinA:sinB:sinC=5:7:8,则此三角形的最大角与最小角之和为(  )
A、90°B、120°C、135°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

2、在△ABC中,若sinA•sinB<cosAcosB,则△ABC一定为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)在△ABC中,若sinA=
5
13
,cosB=
3
5
,则cosC的值是
-
16
65
-
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinA:sinB:sinC=3:4:5,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,不正确的是(  )

查看答案和解析>>

同步练习册答案