精英家教网 > 高中数学 > 题目详情

【题目】已知命题实数满足(其中),命题方程表示双曲线.

I)若,且为真命题,求实数的取值范围;

(Ⅱ)的必要不充分条件,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】

)将代入不等式,并解出命题中的不等式,同时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个命题都是真命题,然后将两个范围取交集可得出实数的取值范围;

)解出命题中的不等式,由的必要不充分条件,得出命题中实数的取值范围是命题中不等式解集的真子集,然后列不等式组可求出实数的取值范围。

)由

为真时实数t的取值范围是.

表示双曲线,,为真时实数的取值范围是.

为真,则真且真,所以实数t的取值范围是

)设

的必要不充分条件,.

时,,有,解得

时,,显然,不合题意.

∴实数a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:

(1)算出第三组的频数.并补全频率分布直方图;

(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若处取到极小值,求的值及函数的单调区间;

(2)若当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为2.

)求函数上的单调递减区间;

,,所对的边分别是,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将m位性别相同的客人,按如下方法安排入住这n个房间:首先,安排1位客人和余下的客人的入住房间;然后,从余下的客人中安排2位客人和再次余下的客人的入住房间;依此类推,第几号房就安排几位客人和余下的客人的入住.这样,最后一间房间正好安排最后余下的n位客人.试求客人的数和客房的房间数,以及每间客房入住客人的数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据权威部门统计,高中学生眼睛近视已是普遍现象,这与每个学生是否科学用眼有很大关系.每年55日是全国爱眼日,我市某中学在此期间开展了一系列的用眼卫生教育活动.为了解本校学生用眼卫生情况,学校医务室随机抽取了100名学生对其进行调查,下面是根据调查结果绘制的学生不间断用眼时间(单位:分钟)的频率分布直方图,且将不间断用眼时间不低于60分钟的学生称为不爱护眼者,低于60分钟的学生称为爱护眼者”.

1)根据频率分布直方图,求这100名学生不间断用眼时间的平均数和中位数(结果精确到0.1)

2)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为不爱护眼者与性别有关?

爱护眼者

不爱护眼者

合计

45

15

合计

3)在不间断用眼时间为两组人中先按分层抽样的方法任意选取5人,再从这5人中随机抽取2人了解他们的视力状况,求这两人来自不同组别的概率.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点,点在椭圆上,且.

(1)求椭圆的方程;

(2)过的直线分别交椭圆,且,问是否存在常数,使得等差数列?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程次后,袋中白球的个数记为

1)求随机变量的概率分布及数学期望

2)求随机变量的数学期望关于的表达式.

查看答案和解析>>

同步练习册答案