精英家教网 > 高中数学 > 题目详情
4.已知点(α,-1)在函数y=log2x的图象上,则函数y=xα的定义域为(  )
A.{x|x≥0}B.{x|x>0}C.{x|x∈R,x≠0}D.R

分析 由点(α,-1)在函数y=log2x的图象上列式求得α,代入幂函数y=xα,则其定义域可求.

解答 解:∵点(α,-1)在函数y=log2x的图象上,
∴log2α=-1,即$α=\frac{1}{2}$.
∴y=xα=${x}^{\frac{1}{2}}=\sqrt{x}$.
函数的定义域为[0,+∞).
故选:A.

点评 本题考查函数的定义域及其求法,考查了对数函数的图象和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,且a3=-1,a6=-7.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.与双曲线与$\frac{x^2}{3}-{y^2}=1$有共同渐近线且与椭圆$\frac{x^2}{3}+{y^2}=1$有共同焦点,则此双曲线的方程为$\frac{{x}^{2}}{\frac{3}{2}}-\frac{{y}^{2}}{\frac{1}{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{b}{a}}}({x^2}-4x+13)$,则函数g(x)的最小值为(  )
A.2log23B.2C.3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-4x-4.
(1)若函数定义域为(-1,1],求函数值域和最值
(2)若函数定义域为[0,3),求函数值域和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x2-4ax+a2-2a+2.
(1)若函数f(x)在区间[0,2]上的最大值记为g(a),求g(a)的解析式;
(2)若函数f(x)在区间[0,2]上的最小值为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.偶函数f(x)、奇函数g(x)的图象分别如图①、②所示,若方程:f(f(x))=0,f(g(x))=0,g(g(x))=2,g(f(x))=2的实数根的个数分别为a、b、c、d,则a+b+c+d=(  )
A.16B.18C.20D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于A,B两点,M是直线l与椭圆C的一个公共点,若$\overrightarrow{AM}$=e$\overrightarrow{AB}$,则该椭圆的离心率e=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=loga(1+x)(a>0且a≠1),x∈(-1,0)时有f(x)>0,
证明:对任意x1>1,x2>1有$\frac{f({x}_{1}-1)+f({x}_{2}-1)}{2}$≥f($\frac{{x}_{1}+{x}_{2}-2}{2}$).

查看答案和解析>>

同步练习册答案