精英家教网 > 高中数学 > 题目详情
椭圆C:长轴为8离心率
(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.
【答案】分析:(1)由椭圆C:长轴为8,离心率,知,由此能求出椭圆C的标准方程.
(2)法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,设直线与椭圆的交点为A(x1,y1),B(x2,y2),则,由M为AB的中点,知,由此能求出直线方程.
法二:设直线与椭圆的交点为A(x1,y1),B(x2,y2),M(2,1)为AB的中点,所以x1+x2=4,y1+y2=2,用点差法能求出直线方程.
法三:设所求直线与椭圆的一个交点为A(x,y),由于中点为M(2,1),则另一个交点为B(4-x,2-y),因为A、B两点在椭圆上,所以有,由此能求出直线方程.
解答:解:(1)∵椭圆C:长轴为8,离心率

,b=
∴椭圆C的标准方程为(6分)
(2)解法一:设所求直线方程为y-1=k(x-2),
代入椭圆方程并整理得:(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,
又设直线与椭圆的交点为A(x1,y1),B(x2,y2),
则x1,x2是方程的两个根,
于是
又M为AB的中点,所以
解得,(5分)
故所求直线方程为x+2y-4=0.(2分)
解法二:设直线与椭圆的交点为A(x1,y1),B(x2,y2),
M(2,1)为AB的中点,
所以x1+x2=4,y1+y2=2,
又A、B两点在椭圆上,

两式相减得
所以
,(5分)
故所求直线方程为x+2y-4=0.(2分)
解法三:设所求直线与椭圆的一个交点为A(x,y),
由于中点为M(2,1),
则另一个交点为B(4-x,2-y),
因为A、B两点在椭圆上,
所以有
两式相减得x+2y-4=0,
由于过A、B的直线只有一条,(5分)
故所求直线方程为x+2y-4=0.(2分)
点评:本题考查椭圆标准方程和直线方程的求法,考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
长轴为8离心率e=
3
2

(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:安徽省肥西农兴中学2010-2011学年高二上学期期末考试数学文科试题 题型:044

椭圆C:长轴为8离心率

(1)求椭圆C的标准方程;

(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:山东省任城一中2010-2011学年高二下学期期末考试数学文科试题 题型:044

椭圆C:长轴为8离心率

(1)求椭圆C的标准方程;

(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:2012届山东省济宁市高二下学期期末考试文科数学 题型:解答题

(13分)椭圆C:长轴为8离心率

 

(1)求椭圆C的标准方程;

(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,

求这条弦所在的直线方程。

 

查看答案和解析>>

同步练习册答案