【题目】下列说法正确的是( )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为,结果这天没下雨,这表明天气预报并不科学.
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位.
A.①②B.③④C.①③D.②④
【答案】B
【解析】
①由于间隔相同,这样的抽样是系统抽样;
②降水概率为90%的含义是指降水的可能性为90%,但不一定降水;
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好,正确;
④在回归直线方程0.1x+10中,回归系数为0.1,利用回归系数的意义可得结论.
解:①从匀速传递的产品生产流水线上,质检员每10分钟从某处抽取一件产品进行某项指标检测,由于间隔相同,这样的抽样是系统抽样,故①不正确;
②降水概率为90%的含义是指降水的可能性为90%,但不一定降水,故②不正确;
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好,正确;
④在回归直线方程0.1x+10中,回归系数为0.1,当解释变量x每增加一个单位时,预报变量 增加0.1个单位,故④正确.
故选:B.
科目:高中数学 来源: 题型:
【题目】给出如下四个命题:①若“且”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15,N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.
(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.
(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上海地铁四通八达,给市民出行带来便利,已知某条线路运行时,地铁的发车时间间隔(单位:分字)满足:,,经测算,地铁载客量与发车时间间隔满足,其中.
(1)请你说明的实际意义;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求最大净收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆的普通方程及其极坐标方程;
(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆的普通方程及其极坐标方程;
(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为80万元,同时将受到环保部门的处罚,第一个月罚4万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面可以大大降低原料成本,据测算,添加回收净化设备并投产后的前4个月中的累计生产净收入g(n)是生产时间个月的二次函数是常数,且前3个月的累计生产净收入可达309万元,从第5个月开始,每个月的生产净收入都与第4个月相同,同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励120万元.
(1)求前6个月的累计生产净收入g(6)的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造的纯收入.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com