精英家教网 > 高中数学 > 题目详情

【题目】设向量 =(4cosα,sinα), =(sinβ,4cosβ), =(cosβ,﹣4sinβ)
(1)若 ﹣2 垂直,求tan(α+β)的值;
(2)若β∈(﹣ ],求| |的取值范围.

【答案】
(1)解: ﹣2 =(sinβ﹣2cosβ,4cosβ+8sinβ)

﹣2 垂直,

﹣2 )=0,

即4cosαsinβ﹣8cosαcosβ+4sinαcosβ+8sinαsinβ=4sin(α+β)﹣8cos(α+β),

则sin(α+β)=2cos(α+β),

即tan(α+β)=2,


(2)解:由 =(sinβ+cosβ,4cosβ﹣4sinβ),

则| |2=(sinβ+cosβ)2+(4cosβ﹣4sinβ)2=17﹣15sin2β,

∵β∈(﹣ ],

∴2β∈(﹣ ],

<sin2β≤1,

则2≤17﹣15sin2β<

则2≤| |2

≤| |<

即| |的取值范围是[


【解析】(1)根据 ﹣2 垂直,转化为数量积为0,结合三角函数的两角和差的公式进行转化求解即可.(2)根据向量模长的公式 进行化简,结合三角函数的有界性进行求解.
【考点精析】本题主要考查了两角和与差的正切公式的相关知识点,需要掌握两角和与差的正切公式:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 )满足 =2,且 的夹角为120° , t∈R,则|(1﹣t) +t |的最小值是 . 已知 =0,向量 满足( )( )=0,| |=5,| |=3,则 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形, 相交于点 平面 平面 中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)当直线与平面所成角为时,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明:12﹣22+32﹣42+…+(﹣1)n1n2=(﹣1)n1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为x分钟.有1000名小学生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是680,则平均每天做作业的时间在0~60分钟内的学生的频率是(

A.680
B.320
C.0.68
D.0.32

查看答案和解析>>

同步练习册答案