精英家教网 > 高中数学 > 题目详情

【题目】【河南省新乡市2017届高三上学期第一次调研】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为

1)求椭圆和抛物线的方程;

2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直

线的斜率的取值范围.

【答案】1 ;(2.

【解析】试题分析:(1)抛物线的准线为,所以,抛物线方程为,根据离心率,所以椭圆的方程为;(2)设直线,联立直线的方程和椭圆的方程,消去,由于直线和椭圆有两个交点,所以判别式大于零,写出根与系数关系,在以为直径的圆的外部等价于,将根与系数关系代入求得的取值范围是.

试题解析:

1)由题意得,故抛物线的方程为,又,从而椭圆的方程为

2)显然直线不满足题设条件,可设直线

,得

根据题意,得

,综上得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,.

(1)f(x)的最小正周期和最大值;(2)讨论f(x)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:

当直线ABa60°角时,ABb30°角;

当直线ABa60°角时,ABb60°角;

直线ABa所成角的最小值为45°;

直线ABa所成角的最大值为60°.

其中正确的是________.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中a≠0,q:实数x满足.

(I)若a=1,且p∧q为真,求实数x的取值范围.

(II)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为xy+2=0,则顶点C的坐标是(  )

A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为A(0,-1),焦点在x轴上。若右焦点F到直线xy+2=0的距离为3。

(1)求椭圆的方程;

(2)设直线ykxm(k≠0)与椭圆相交于不同的两点MN。当|AM|=|AN|时,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体为一简单组合体在底面平面

(1)求证:平面平面

(2)求该组合体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面,是直线,给出下列命题:

,则

,则

如果是异面直线,则相交;

,且,则,且

其中正确确命题的序号是_____(把正确命题的序号都填上)

查看答案和解析>>

同步练习册答案