精英家教网 > 高中数学 > 题目详情

如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△,使平面⊥平面BCDE,F为线段的中点. ks5u
(Ⅰ)求证:EF∥平面
(Ⅱ)求直线与平面所成角的正切值.

(I)证明略
(II)直线与平面所成角的正切值为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知
(I))求证:⊥平面
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。

(I)求证:A1B1//平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四面体中,两两互相垂直,且

(1)求证:平面平面
(2)求二面角的大小;
(3)若直线与平面所成的角为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段上.

(1)求证:平面BCF⊥平面ACFE;
(2)当为何值时,∥平面?证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,是棱的中点.
(Ⅰ)证明:
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点的坐标为.
1)求点到直线的距离的面积
(2)求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
一个四棱锥的三视图如图所示:
(1)根据图中标出的尺寸画出直观图(不要求写画法步骤);
(2)求三棱锥A-PDC的体积;高考资源网
(3)试在PB上求点M,使得CM∥平面PDA并加以证明。

查看答案和解析>>

同步练习册答案