精英家教网 > 高中数学 > 题目详情
甲和乙等五名志愿者被随机地分到A、B、C、D四个不同的岗位服务,每个岗位至少有一名志愿者,则甲和乙在不同岗位服务的概率为(  )
A、
9
10
B、
1
10
C、
1
4
D、
48
625
考点:古典概型及其概率计算公式
专题:概率与统计
分析:所有的结果共有C52A44种,不满足条件的事件数A44 ,可得不满足条件的概率,用1减去此概率即得所求.
解答: 解:5个人分到4个岗位,每个岗位至少有一名志愿者共有C52A44=240种结果,
甲和乙在同一岗位服务的事件数A44 =24
则甲和乙不在同一岗位服务的概率为 1-
24
240
=
9
10

故选:A
点评:本题主要考查古典概型和排列组合,排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
x2-lnx+x+1,g(x)=aex+
a
x
+ax-2a-1,其中a∈R.
(Ⅰ)若a=2,求f(x)的极值点;
(Ⅱ)试讨论f(x)的单调性;
(Ⅲ)若a>0,?x∈(0,+∞),恒有g(x)≥f′(x)(f′(x)为f(x)的导函数),求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为R的球内接一个正方体,则该正方体的体积是(  )
A、2
2
R3
B、
4
3
πR3
C、
3
9
R3
D、
8
9
3
R3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-1)2+lnx+1.
(Ⅰ)当a=-
1
4
时,求函数f(x)的极值;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在
x≥1
y-x≤0
所表示的平面区域内,求数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-1,2),圆C:(x-1)2+(y+2)2=4
(1)求过点P的圆C的切线方程,并求此切线的长度;
(2)设圆C上有两个不同的点关于直线l对称且点P到直线l的距离最长,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=
3
,|
b
|=2,|
a
+
b
|=
13
,求
a
+
b
a
-
b
的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
x
+x2 x∈(1,e)
1-x2
x∈[-1,1]
,则
 e
 -1
f(x)dx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(2x+Φ)(A>0,Φ∈R)的部分图象如图所示,则f(-
π
24
)=(  )
A、-1
B、-
1
2
C、-
3
2
D、-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求关于x的方程ax2+2
2
x+a+1=0至少有一个负的实数根的充要条件.

查看答案和解析>>

同步练习册答案