精英家教网 > 高中数学 > 题目详情

【题目】大学的生活丰富多彩,很多学生除了学习本专业的必修课外,还会选择一些选修课来充实自已.甲同学调查了自己班上的名同学学习选修课的情况,并作出如下表格:

每人选择选修课科数

频数

1)求甲同学班上人均学习选修课科数:

2)甲同学和乙同学的某门选修课是在同一个班,且该门选修课开始上课的时间是早上,已知甲同学每次上课都会在之间的任意时刻到达教室,乙同学每次上课都会在之间的任意时刻到达教室,求连续天内,甲同学比乙同学早到教室的天数的分布列和数学期望.

【答案】(1)甲同学的班上平均每人学习选修课科数是(2)详见解析

【解析】

1)将所有的每人选择选修课科数和对应频数相乘之后再求和,即得总的科目数,再除以总人数,即为人均学习选修课科数;

2)将甲和乙到达教室的时间视为,可得甲,乙到达教室的时间在平面直角坐标系中构成的区域,然后找到甲比乙早到教室的时间在平面直角坐标系中构成的区域,利用几何概型的公式可求出甲比乙早到教室的概率,然后分别求出甲比乙早到教室的天数时的概率,进而可求出天数的分布列和数学期望.

解:(1)设甲同学班上人均学习选修课科数为,根据表格可得

即甲同学的班上平均每人学习选修课科数是.

2)设甲同学和乙同学到达教室的时间分别为可以看成平面中的点,

则全部结果所构成的区域为

所以.

B表示事件“甲同学比乙同学早到教室”,该事件所构成的平面区域为

所以

.

将连续天内甲同学比乙同学早到教室的天数记为,则可能的取值为

的分布列为

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,设,其中为坐标原点.

1)设点轴上方,到线段所在直线的距离为,且,求和线段的大小;

2)设点为线段的中点,若,且点在第二象限内,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的左顶点为,过的直线交椭圆于另一点,直线轴于点,且.

1)求椭圆的离心率;

2)若椭圆的焦距为为椭圆上一点,线段的垂直平分线轴上的截距为不与轴重合),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是以BC为直径的圆O上异于BC的动点,P为平面ABC外一点,且平面PBC⊥平面ABCBC=3,PB=2PC,则三棱锥PABC外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若有两个零点,求a的取值范围;

2)设,直线的斜率为k,若恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列A: ,… ().如果对小于()的每个正整数都有 ,则称是数列A的一个“G时刻”.是数列A的所有“G时刻组成的集合.

(1)对数列A:-2,2,-1,1,3,写出的所有元素

(2)证明:若数列A中存在使得>,则

(3)证明:若数列A满足- ≤1(n=2,3, …,N),的元素个数不小于 -.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题

函数的最小正周期是

终边在y轴上的角的集合是

在同一坐标系中,函数的图象和函数的图象有一个公共点;

把函数

中,若,则是等腰三角形

其中真命题的序号是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为实数,函数f(x)=aln x+x2-4x.

(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;

(2)设g(x)=(a-2)x,若x0,使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案