【题目】大学的生活丰富多彩,很多学生除了学习本专业的必修课外,还会选择一些选修课来充实自已.甲同学调查了自己班上的名同学学习选修课的情况,并作出如下表格:
每人选择选修课科数 | |||||||
频数 |
(1)求甲同学班上人均学习选修课科数:
(2)甲同学和乙同学的某门选修课是在同一个班,且该门选修课开始上课的时间是早上,已知甲同学每次上课都会在到之间的任意时刻到达教室,乙同学每次上课都会在到之间的任意时刻到达教室,求连续天内,甲同学比乙同学早到教室的天数的分布列和数学期望.
【答案】(1)甲同学的班上平均每人学习选修课科数是(2)详见解析
【解析】
(1)将所有的每人选择选修课科数和对应频数相乘之后再求和,即得总的科目数,再除以总人数,即为人均学习选修课科数;
(2)将甲和乙到达教室的时间视为,,可得甲,乙到达教室的时间在平面直角坐标系中构成的区域,然后找到甲比乙早到教室的时间在平面直角坐标系中构成的区域,利用几何概型的公式可求出甲比乙早到教室的概率,然后分别求出甲比乙早到教室的天数为,,,时的概率,进而可求出天数的分布列和数学期望.
解:(1)设甲同学班上人均学习选修课科数为,根据表格可得
,
即甲同学的班上平均每人学习选修课科数是.
(2)设甲同学和乙同学到达教室的时间分别为,,可以看成平面中的点,
则全部结果所构成的区域为,
所以.
用B表示事件“甲同学比乙同学早到教室”,该事件所构成的平面区域为
,
所以,
故.
将连续天内甲同学比乙同学早到教室的天数记为,则可能的取值为,,,,
,,
,,
故的分布列为
所以,.
科目:高中数学 来源: 题型:
【题目】已知点,,,设,,其中为坐标原点.
(1)设点在轴上方,到线段所在直线的距离为,且,求和线段的大小;
(2)设点为线段的中点,若,且点在第二象限内,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的左顶点为,过的直线交椭圆于另一点,直线交轴于点,且.
(1)求椭圆的离心率;
(2)若椭圆的焦距为,为椭圆上一点,线段的垂直平分线在轴上的截距为(不与轴重合),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2,PC,则三棱锥P﹣ABC外接球的表面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列A: , ,… ().如果对小于()的每个正整数都有 < ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合.
(1)对数列A:-2,2,-1,1,3,写出的所有元素;
(2)证明:若数列A中存在使得>,则 ;
(3)证明:若数列A满足- ≤1(n=2,3, …,N),则的元素个数不小于 -.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在y轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有一个公共点;
④把函数;
⑤在中,若,则是等腰三角形;
其中真命题的序号是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a为实数,函数f(x)=aln x+x2-4x.
(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;
(2)设g(x)=(a-2)x,若x0∈,使得f(x0)≤g(x0)成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com