精英家教网 > 高中数学 > 题目详情

已知数列{an}中a1=0,an+1=an+2n(n=1,2,3,…).
(Ⅰ)求a2,a3,a4
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)已知数列{bn}满足数学公式(n∈N*),求数列{bn}的前n项和.

解:(Ⅰ)由已知得a2=a1+2=2,a3=a2+4=6,a4=a3+6=12.
(Ⅱ)由已知得an+1-an=2n.所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=
(Ⅲ)∵an=n2-n,
=n•2n
∴数列{bn}前n项和Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+23+…2n-n×2n+1

∴Sn=2+(n-1)•2n+1
分析:(Ⅰ)由a1=0,an+1=an+2n可求得a2、a3、a4
(Ⅱ)由于an-an-1=2(n-1),(n≥2),可采用累加法得:an=(an-an-1)+(an-1-an-2)+…(a2-a1)+a1,从而可求得an
(Ⅲ)由(Ⅱ)可求得an=n2-n,于是=n•2n,其前n项和Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②将①②两个式子利用错位相减法即可求得数列{bn}的前n项和.
点评:本题考查数列的求和,着重考查数列的“累加法”求和与“错位相减法”求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-10,且经过点A(an,an+1),B(2n,2n+2)两点的直线斜率为2,n∈N*
(1)求证数列{
an2n
}
是等差数列,并求数列{an}的通项公式;
(2)求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=3n+4,若an=13,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1为由曲线y=
x
,直线y=x-2及y轴
所围成图形的面积的
3
32
Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
对一切正整数n都成立,求正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an对任意x∈N*恒成立,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

查看答案和解析>>

同步练习册答案