【题目】已知数列{an}是各项均为正整数的等差数列,公差d∈N* , 且{an}中任意两项之和也是该数列中的一项.
(1)若a1=4,则d的取值集合为;
(2)若a1=2m(m∈N*),则d的所有可能取值的和为 .
【答案】
(1){1,2,4}
(2)2m+1﹣1
【解析】解:由题意可得,ap+aq=ak , 其中p、q、k∈N* , 由等差数列的通向公式可得a1+(p﹣1)d+a1+(q﹣1)d=a1+(k﹣1),
整理得d= ,
1)若a1=4,则d= ,
∵p、q、k∈N* , 公差d∈N* ,
∴k﹣p﹣q+1∈N* ,
∴d=1,2,4,
故d的取值集合为 {1,2,4};
2)若a1=2m(m∈N*),则d= ,
∵p、q、k∈N* , 公差d∈N* ,
∴k﹣p﹣q+1∈N* ,
∴d=1,2,4,…,2m ,
∴d的所有可能取值的和为1+2+4+…+2m= =2m+1﹣1,
所以答案是(1){1,2,4},(2)2m+1﹣1.
【考点精析】利用等比数列的前n项和公式和等差数列的性质对题目进行判断即可得到答案,需要熟知前项和公式:;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.
科目:高中数学 来源: 题型:
【题目】在数列中,已知,且对于任意正整数n都有.
(1)令,求数列的通项公式;
(2)求的通项公式;
(3)设是一个正数,无论为何值,都有一个正整数使成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级共有学生名,为了解学生某次月考的情况,抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,绘制出如下尚未完成的频率分布表:
分组 | 频数 | 频率 |
(1)补充完整题中的频率分布表;
(2)若成绩在为优秀,估计该校高三年级学生在这次月考中,成绩优秀的学生约为多少人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于正整数集合,如果去掉其中任意一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合为“和谐集”.
()判断集合是否是“和谐集”(不必写过程).
()请写出一个只含有个元素的“和谐集”,并证明此集合为“和谐集”.
()当时,集合,求证:集合不是“和谐集”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的参数方程为 .再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.
(1)求圆C的极坐标方程;
(2)设圆C与直线l交于点A、B,求|MA||MB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是一个容量为20的样本数据分组后的频率分布表:
分组 | ||||||
频数 | 4 | 2 | 6 | 8 | ||
(1)请估计样本的平均数;
(2)以频率估计概率,若样本的容量为2000,求在分组中的频数;
(3)若从数据在分组与分组的样本中随机抽取2个,求恰有1个样本落在分组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面凸四边形中(凸四边形指没有角度数大于的四边形),.
(1)若,,求;
(2)已知,记四边形的面积为.
① 求的最大值;
② 若对于常数,不等式恒成立,求实数的取值范围.(直接写结果,不需要过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+mx+n(m,n∈R)满足f(0)=f(1),且方程x=f(x)有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)当x∈[0,3]时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆形纸片的圆心为,半径为1,该纸片上的等边三角形的中心为.、、为圆上的点,,,分别是以,,为底边的等腰三角形.沿虚线剪开后,分别以,,为折痕折起,,,使得、、重合,得到三棱锥.当的边长变化时,所得三棱锥体积的最大值为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com