精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________

【答案】

【解析】

设滚动后圆的圆心为C,切点为A,连接CP.过C作与x轴正方向平行的射线,交圆CB21),设∠BCP=θ,则根据圆的参数方程,得P的坐标为(1+cosθ1+sinθ),再根据圆的圆心从(01)滚动到(11),算出,结合三角函数的诱导公式,化简可得P的坐标为,即为向量的坐标.

设滚动后的圆的圆心为C,切点为,连接CP

C作与x轴正方向平行的射线,交圆C,设

C的方程为

∴根据圆的参数方程,得P的坐标为

∵单位圆的圆心的初始位置在,圆滚动到圆心位于

,可得

可得

代入上面所得的式子,得到P的坐标为

所以的坐标是.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 的值;

(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取60名学生进行调查,则应从丁专业抽取的学生人数为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知直线,抛物线).

(1)若直线过抛物线的焦点,求抛物线的方程;

(2)已知抛物线上存在关于直线对称的相异两点

①求证:线段PQ的中点坐标为

②求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分别是A1B,B1C1的中点.

(1)求证:MN//平面ACC1A1

(2)求点N到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.轴交于两点,是圆上不同于的一动点,所在直线分别与交于.

(1)当时,求以为直径的圆的方程;

2)证明:以为直径的圆截轴所得弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,设其定义域上的区间.

1)判断该函数的奇偶性,并证明;

2)当时,判断函数在区间)上的单调性,并证明;

3)当时,若存在区间),使函数在该区间上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;(2)过点作直线与曲线交于两点,求线段的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

同步练习册答案