精英家教网 > 高中数学 > 题目详情
如图,为了测量隧道两口之间AB的长度,对给出的四组数据,求解计算时,较为简便易行的一组是(  )
A、a,b,γ
B、a,b,α
C、a,b,β
D、α,β,a
考点:解三角形的实际应用
专题:应用题
分析:为了测量隧道两口之间AB的长度,a,b可以测得,角γ也可测得,α、β都是不易测量的数据,利用余弦定理可直接求出AB,故可知结论
解答: 解:根据实际情况α、β都是不易测量的数据,在△ABC中,a,b可以测得,角γ也可测得,根据余弦定理能直接求出AB的长.
故选:A.
点评:本题以实际问题为素材,考查解三角形的实际应用,解题的关键是分析哪些可测量,哪些不可直接测量,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a=3,b=4,∠C=60°,则c的值等于(  )
A、5
B、13
C、
13
D、
37

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1)
(Ⅰ)证明:数列{an+1}为等比数列;
(Ⅱ)求数列{
1
bnbn+1
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C、D是球面上的四点,AB、AC、AD两两互相垂直,且AB=3,AC=4,AD=
11
,则球的表面积为(  )
A、36πB、64π
C、100πD、144π

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线与椭圆
x2
4
+y2=1有相同的焦点F1、F2,P在双曲线的右支上,且PF2⊥F1F2,∠PF1F2=30°,则双曲线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:
分数[50,60)[60,70)[70,80)[80,90)[90,100]
频数239a1
频率0.080.120.36b0.04
(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;
(Ⅱ)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=
3
x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为(  )
A、x2-
y2
3
=1
B、
x2
3
-
y2
9
=1
C、
x2
4
-
y2
12
=1
D、
x2
9
-
y2
27
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是△ABC所在平面内一点,
PB
+
PC
+2
PA
=0
,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn满足Sn=
2n
n+1
,则a6=
 

查看答案和解析>>

同步练习册答案