精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若满足f(x)+f(x﹣8)≤2,求x的取值范围.

【答案】
(1)解:令x=y=1得:f(11)=f(1)+f(1),

∴f(1)=0;

令y= ,则f(x )=f(x)+f( )=f(1)=0,

∵f(3)=1,

∴f( )=﹣f(3)=﹣1


(2)解:∵f(9)=f(3)+f(3)=2,

∴f(x)+f(x﹣8)≤2f[x(x﹣8)]≤f(9),

而函数f(x)在定义域(0,+∞)上为增函数,

解得:8<x≤9,

∴x的取值范围是(8,9]


【解析】(1)令x=y=1易得f(1)=0;令y= ,可得f(x)+f( )=0,于是由f(3)=1可求得f( )的值;(2)由f(x)+f(x﹣8)<2,知f(x)+f(x﹣8)=f[x(x﹣8)]<f(9),再由函数f(x)在定义域(0,+∞)上为增函数,能求出原不等式的解集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数 ,且0<x1<x2<1,设 ,则a,b的大小关系是(
A.a>b
B.a<b
C.a=b
D.b的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的中心为O,四边形ODEF为矩形,平面ODEF平面ABCD,DE=DA=DB=2

(I)若GDC的中点,求证:EG//平面BCF;

(II)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y= 的定义域为M,那么(
A.{x|x>﹣1且x≠0}
B.{x|x>﹣1}
C.M={x|x<﹣1或x>0}
D.M={x|x<﹣1或﹣1<x<0或x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)aln x(a0aR)

(1)a1,求函数f(x)的极值和单调区间;

(2)若在区间(0e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a≥0)
(1)当a=0时,求f(x)的单调区间;
(2)求y=f(x)在区间(0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(x)=2a,f′(2)=﹣b,
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)ex , 求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)当x≤0时,解不等式f(x)≥﹣1;
(2)写出该函数的单调区间;
(3)若函数g(x)=f(x)﹣m恰有3个不同零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 是定义在(﹣∞,+∞)上的奇函数,且f( )=
(1)求实数a、b,并确定函数f(x)的解析式;
(2)判断f(x)在(﹣1,1)上的单调性,并用定义证明你的结论.

查看答案和解析>>

同步练习册答案