精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=ax﹣x3(a>0,且a≠1)恰好有两个不同的零点,则实数a的取值范围是(
A.1<a<e
B.1<a<e
C.0<a<e
D.e <a<e

【答案】A
【解析】解:∵f(x)=ax﹣x3(a>0,且a≠1)恰好有两个不同的零点 ∴等价于方程ax=x3恰有两个不同的解.
当0<a<1时,y=ax与y=x3的图象只有一个交点,
不符合题意.
当a>1时,y=ax与y=x3的图象在x∈(﹣∞,0)上没有交点,所以只考虑x>0,
于是可两边同取自然对数,得xlna=3lnx,即lna=
令g(x)= ,则
当x∈(0,e)时,g(x)单调递增,
当x<1时,当g(x)<0,

x∈(e,+∞)时,g(x)单减且g(x)>0.
∴要有两个交点,0<lna<g(e)= ,即1<a<
故选:A
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+3x,其中a>0. (Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时, ,则f(log220)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方

(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a≠0).
(1)已知函数f(x)在点(0,1)处的斜率为1,求a的值;
(2)求函数f(x)的单调区间;
(3)若a>0,g(x)=x2emx , 且对任意的x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣f'(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)求证:当x∈(0,e]时,e2x2 x>(x+1)lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=bi(b∈R), 是实数,i是虚数单位.
(1)求复数z;
(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

同步练习册答案