精英家教网 > 高中数学 > 题目详情
若sinα≤0,则α的集合是
 
考点:三角函数线
专题:计算题,三角函数的求值
分析:利用正弦函数的性质,即可得出结论.
解答: 解:∵sinα≤0,
∴α∈[2kπ-π,2kπ](k∈Z).
故答案为:[2kπ-π,2kπ](k∈Z).
点评:本题考查角的表示方法,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若向量
a
的始点为A(-2,4),终点为B(2,1),求:
(1)向量
a
的模;
(2)与向量
a
平行的单位向量的坐标;
(3)与向量
a
垂直的单位向量的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点不共线,对平面ABC外的任一点O,下列条件中能确定定点M与点A、B、C一定共面的是(  )
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
2
OA
+
1
3
OB
+
1
6
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn=2an+(-1)n
(1)求a1的值.
(2)令
an
2n
=bn,求证:数列{bn-bn-1}(n≥2)是等比数列;
(3)求证:对任意正整数m>4,有
1
a4
+
1
a5
+
1
a6
+…+
1
am
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

a、b、c、d四名运动员争夺某次赛事的第1、2、3、4名,比赛规则为:通过抽签,将4人分为甲、乙两个小组,每组2人,第一轮比赛(半决赛):两组各进行一场比赛决出各组的胜者和负者;第二轮比赛(决赛):两组中的胜者进行一场比赛争夺第1、2名,两组中的负者进行一场比赛争夺第3、4名,死命选手以往交手的胜负情况如表所示:
  a c d
 a -a20胜10负 a13胜利26负 a18胜18负 
 b b10胜20负-b28胜14负  b19胜19负
 c c26胜13负 c14胜28负- c17胜17负
 d  d18胜18负  d19胜19负d17胜17负 -
若抽签结果为甲组:a、d,乙组:b、c,每场比赛中,以双方以往交手各自获胜的概率作为其获胜的概率.
(1)求a获得第1名的概率;
(2)求a的名次ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm),这个几何体的体积为
 
cm3;表面积为
 
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
m
+
y2
n
=1的离心率为2,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为(  )
A、
x2
3
-y2=1
B、
x2
4
-
y2
12
=1
C、y2-
x2
3
=1
D、
y2
12
-
x2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),F1,F2为左右焦点,|F1F2|=2,椭圆上一动点P,左顶点为A,且cos∠F1PF2的最小值为
1
2

(1)椭圆C的方程;
(2)直线l:y=kx+m与椭圆C相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN,垂足为H,且
AH
2
=
MH
HN
,直线l是否过定点,如果过定点求出定点坐标,不过说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2+
1
x2
-2)3展开式中的常数项为(  )
A、-8B、-12
C、-20D、20

查看答案和解析>>

同步练习册答案