精英家教网 > 高中数学 > 题目详情
已知函数,g(x)=lnx.
(Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
【答案】分析:(1)由于函数的解析式中含有参数a,故我们要对a进行分类讨论,注意到a出现在二次项系数的位置,故可以分a>0,a=0,a<0三种情况,最后将三种情况得到的结论综合即可得到答案.
(2)方程整理为ax2+(1-2a)x-lnx=0构造函数H(x)=ax2+(1-2a)x-lnx(x>0),则原方程在区间内有且只有两个不相等的实数根即为函数H(x)在区间()内有且只有两个零点,根据函数零点存在定理,结合函数的单调性,构造不等式组,解不等式组即可得到结论.
解答:解:(Ⅰ)当a=0时,f(x)=2x在[1,+∞)上是单调增函数,符合题意.
当a>0时,y=f(x)的对称轴方程为
由于y=f(x)在[1,+∞)上是单调增函数,
所以,解得a≤-2或a>0,所以a>0.
当a<0时,不符合题意.
综上,a的取值范围是a≥0.
(Ⅱ)把方程整理为

即为方程ax2+(1-2a)x-lnx=0.
设H(x)=ax2+(1-2a)x-lnx(x>0),
原方程在区间()内有且只有两个不相等的实数根,
即为函数H(x)在区间()内有且只有两个零点
=
令H′(x)=0,因为a>0,解得x=1或(舍)
当x∈(0,1)时,H′(x)<0,H(x)是减函数;
当x∈(1,+∞)时,H′(x)>0,H(x)是增函数.
H(x)在()内有且只有两个不相等的零点,
只需


解得
所以a的取值范围是().
点评:遇到类二次方程/函数/不等式(即解析式的二次项系数含有参数)时,一般要进行分类讨论,分类的情况一般有:①先讨论二次项系数a是否为0,以确定次数②再讨论二次项系数a是否大于0,以确定对应函数的开口方向,③再讨论△与0的关系,以确定对应方程根的个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=g(x)与f(x)=loga(x+1)(a>1)的图象关于原点对称.
(1)写出y=g(x)的解析式;
(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;
(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=G(x)的图象过原点,其导函数为y=f(x),函数f(x)=3x2+2bx+c且满足f(1-x)=f(1+x).
(1)若f(x)≥0,对x∈[0,3]恒成立,求实数c的最小值.(2)设G(x)在x=t处取得极大值,记此极大值为g(t),求g(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)的图象与函数f(x)=(x-1)2(x≤0)的图象关于直线y=x对称,则函数g(x)的解析式为g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)是定义在R上的奇函数,当x>0时,g(x)=log2x,函数f(x)=4-x2,则函数f(x)•g(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函数y=g(x)定义域是[-2,3],求y=g(x+1)的定义域.

查看答案和解析>>

同步练习册答案