精英家教网 > 高中数学 > 题目详情
12.已知等比数{an}的前n项和Sn,a1=1,S6=9S3
(Ⅰ){an}的通项公式;
(Ⅱ)若数{bn}满足a1b1+a2b2+…+anbn=(n-1)×2n+1,求数列{bn}的前n项和.

分析 (I)由于S6=9S3,可得q≠1,于是$\frac{{q}^{6}-1}{q-1}$=$\frac{9({q}^{3}-1)}{q-1}$,化简解得q即可得出.
(II)a1b1+a2b2+…+anbn=(n-1)×2n+1,可得当n=1时,b1=1;利用递推关系即可得出anbn=n•2n-1,即可得出.

解答 解:(I)∵S6=9S3,∴q≠1,
∴$\frac{{q}^{6}-1}{q-1}$=$\frac{9({q}^{3}-1)}{q-1}$,
化为q3+1=9,解得q=2.
∴an=2n-1
(II)∵a1b1+a2b2+…+anbn=(n-1)×2n+1,
∴当n=1时,b1=1;
当n≥2时,a1b1+a2b2+…+an-1bn-1=(n-2)×2n-1+1,
∴anbn=n•2n-1,又an=2n-1
∴bn=n,n=1时也成立.
∴bn=n.
∴数列{bn}的前n项和Tn=$\frac{n(n+1)}{2}$.

点评 本题考查了递推公式、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=sin2x+tanx,判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从集合{1,2,3,4,5,6,7}中任取五个不同元素构成数列a1,a2,a3,a4,a5,其中是a3是a1和a5的等差中项,且a2<a4,这样的数列共有108.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:$\frac{1+cosα+cos2α+cos3α}{2co{s}^{2}α+cosα-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a}&{x<0}\\{lnx}&{x>0}\end{array}\right.$,若函数f(x)的图象在点A、B处的切线重合,则a的取值范围是(  )
A.(-1,+∞)B.(-ln2,+∞)C.(-2,-1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果函数f(x)=x2+x+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是(  )
A.$-\frac{1}{2}$B.0C.-$\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)=(3-x)6-x(3-x)5的展开式中,含x3项的系数为-810.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=|\overrightarrow b|=\overrightarrow a•\overrightarrow b=2$,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)≤0$,则|$\overrightarrow c$|的最小值为$\sqrt{3}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线l经过点$A(1,\sqrt{3})$和B(1,0),则直线l的倾斜角为(  )
A.B.60°C.90°D.不存在

查看答案和解析>>

同步练习册答案