【题目】在直角坐标系xOy中曲线C的参数方程为(为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l过A,B两点,且这两点的极坐标分别为.
(I)求C的普通方程和的直角坐标方程;
(II)若M为曲线C上一动点,求点M到直线l的最小距离.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,求cosB的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“芝麻开门”娱乐活动中,共有扇门,游戏者根据规则开门,并根据打开门的数量获取相应奖励.已知开每扇门相互独立,且规则相同,开每扇门的规则是:从给定的把钥匙(其中有且只有把钥匙能打开门)中,随机地逐把抽取钥匙进行试开,钥匙使用后不放回.若门被打开,则转为开下一扇门;若连续次未能打开,则放弃这扇门,转为开下一扇门;直至扇门都进行了试开,活动结束.
(1)设随机变量为试开第一扇门所用的钥匙数,求的分布列及数学期望;
(2)求恰好成功打开扇门的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.
(1)完成列联表,并回答能否有的把握认为“对线上教学是否满意 与性别有关”;
态度 性别 | 满意 | 不满意 | 合计 |
男生 | |||
女生 | |||
合计 | 100 |
(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
①数列为等差数列的充要条件是其通项公式为n的一次函数.
②在面积为S的的边AB上任取一点P,则的面积大于的概率为.
③将多项式分解因式得,则.
④若那么由,那么由以及x轴所围成的图形一定在x轴下方.
其中正确命题的序号为_____________(把所有正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点(1,e),(e,)在椭圆上C:1(a>b>0),其中e为椭圆的离心率.
(1)求椭圆C的方程;
(2)直线l经过C的上顶点且l与抛物线M:y2=4x交于P,Q两点,F为椭圆的左焦点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知过点且斜率为1的直线与曲线:(是参数)交于两点,与直线:交于点.
(1)求曲线的普通方程与直线的直角坐标方程;
(2)若的中点为,比较与的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于,直线l与椭圆C交于两点,其中直线l不过原点.
(1)求椭圆C的方程;
(2)设直线的斜率分别为,其中且.记的面积为S.分别以为直径的圆的面积依次为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,离心率为,过作直线与椭圆交于,两点,的周长为8.
(1)求椭圆的标准方程;
(2)问:的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com