精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知椭圆,如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于两点A,B,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).

(1)求m2+k2的最小值;

(2)若|OG|2=|OD||OE|,求证:直线l过定点.

【答案】(1)2;(2)见解析

【解析】

1)设出直线方程为,联立直线的方程和椭圆的方程,化简为一元二次方程的形式.根据直线和椭圆有两个交点得出判别式大于零,写出韦达定理,根据中点坐标公式求得点的坐标,由此求得直线的斜率和方程,根据点坐标求得的关系式,结合基本不等式求得的最小值.2)将直线的方程代入椭圆方程,求得点坐标,结合两点坐标以及两点间的距离公式,求得,代入列方程,解方程求得的关系,由此判断出直线过定点.

(1)设直线l的方程为y=kx+t(k>0),由题意,t>0,

由方程组,得(3k2+1)x2+6ktx+3t2﹣3=0,由题意△>0,所以3k2+1>t2

设A(x1,y1),B(x2,y2),由根与系数的关系得,所以

由于E为线段AB的中点,因此

此时,所以OE所在直线的方程为

又由题意知D(﹣3,m),令x=﹣3,得,即mk=1,

所以m2+k2≥2mk=2,当且仅当m=k=1时上式等号成立,

此时由△>0得0<t<2,因此当m=k=1且0<t<2时,m2+k2取最小值2.

(2)证明:由(1)知D所在直线的方程为

将其代入椭圆C的方程,并由k>0,解得,又

由距离公式及t>0得

由|OG|2=|OD||OE|,得t=k,

因此直线l的方程为y=k(x+1),所以直线l恒过定点(﹣1,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数若方程f(x)=m有4个不同的实根x1,x2,x3,x4,且x1<x2<x3<x4,则()(x3+x4)=(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数.

1)当时,写出的单调区间;

2)若关于的方程有三个不等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若为真命题,为假命题,求实数的取值范围;

2)若“”是“”的充分不必要条件,求实数的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,右焦点为,且上的动点的距离的最大值为4,最小值为2.

1)证明:.

2)若直线相交于两点(均不与重合),且,试问是否经过定点?若经过,求出此定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为,乙协会编号为,丙协会编号分别为,若从这6名运动员中随机抽取2名参加双打比赛.

(1)用所给编号列出所有可能抽取的结果;

(2)求丙协会至少有一名运动员参加双打比赛的概率;

(3)求参加双打比赛的两名运动员来自同一协会的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)若上递增,求的最大值;

(2)若,存在,使得对任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若函数存在唯一的零点,且,则的取值范围.

查看答案和解析>>

同步练习册答案