精英家教网 > 高中数学 > 题目详情
已知数列{an}前n项和为Sn,且a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*).
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设bn=(2n-1)an,求数列{bn} 的前n项和为Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](t>0),且数列{cn} 是单调递增数列,求实数t的取值范围.
分析:(1)由3Sn=5an-an-1+3Sn-1,得到3an=5an-an-1,进而得到
an
an-1
=
1
2
,再由a1=2,能求出数列{an} 的通项公式.
(2)由(1)知:bn=(2n-1)•22-n,故Tn=1×2+3×20+5×2-1+…+(2n-1)•22-n,利用错位相减法能够求出Tn
(3)由cn=n•tn•lgt,cn<cn+1,知n•tn•lgt<(n+1)•tn+1•lgt,再进行分类讨论,能够求出实数t的取值范围.
解答:解:(1)∵3Sn=5an-an-1+3Sn-1
∴3an=5an-an-1
an
an-1
=
1
2

∵a1=2,∴an=2•(
1
2
)
n-1
=22-n

(2)∵an=22-n,bn=(2n-1)an
bn=(2n-1)•22-n
∵数列{bn} 的前n项和为Tn
Tn=1×2+3×20+5×2-1+…+(2n-1)•22-n
同乘公比得
1
2
T
n
=1×20+3×2-1+5×2-2
+…+(2n-1)•21-n
1
2
T
n
=1×2+2×20+2×2-1
+2×2-2+…+2×22-n-(2n-1)•21-n
=2+4[1-(
1
2
)
n-1
]-(2n-1)•21-n
Tn=12-(2n+3)•22-n
(3)∵cn=tn[lg(2t)n+lgan+2](t>0),∴cn=n•tn•lgt,
∵cn<cn+1,∴n•tn•lgt<(n+1)•tn+1•lgt,
①当0<t<1时,则t<
n
n+1
对任意正整数恒成立,0<t<
1
2

②当t>1时,t>
n
n+1
对任意正整数恒成立,∴t>1.
综上可知,实数t的取值范围是(0,
1
2
)∪(1,+∞).
点评:本题考查数列的通项公式和前n项和公式的求法,考查实数的取值范围的求法,解题时要认真审题,注意错位相减法、分类讨论思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前 n项和为Sn,且Sn=n2
(1)求{an}的通项公式    
(2)设 bn=
1anan+1
,求数列{bn}的前 n项 和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn和通项an满足Sn=-
1
2
(an-1)

(1)求数列{an}的通项公式; 
(2)试证明Sn
1
2

(3)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2n-1,则数列{an}的奇数项的前n项的和是
4n-1
3
4n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2an+2n
(Ⅰ)证明数列{
an
2n-1
}
是等差数列,并求{an}的通项公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求数列{bn}是否存在最大值项,若存在,说明是第几项,若不存在,请说明理由;
(Ⅲ)设Tn=|S1|+|S2|+|S3|+…+|Sn|,试比较
Tn+Sn
2
2-n
1+n
an
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案