【题目】选修:不等式选讲
已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
【答案】(1){x|-};(2)m≤﹣或m≥1.
【解析】试题分析:
(Ⅰ)零点分段可得不等式的解集为{x|-};
(Ⅱ)由题意得到关于实数m的不等式,求解不等式可得实数m的取值范围是m≤﹣或m≥1.
试题解析:
(Ⅰ)不等式f(x)<8,即|2x+3|+|2x﹣1|<8,
可化为①或②或③,…
解①得﹣<x<﹣,解②得﹣≤x≤,解③得<x<,
综合得原不等式的解集为{x|-}.
(Ⅱ)因为∵f(x)=|2x+3|+|2x﹣1|≥|(2x+3)﹣(2x﹣1)|=4,
当且仅当﹣≤x≤时,等号成立,即f(x)min=4,…
又不等式f(x)≤|3m+1|有解,则|3m+1|≥4,解得:m≤﹣或m≥1.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上为单调递增函数,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.试比较与0的关系,并给出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,离心率为.设过点的直线与椭圆相交于不同两点, 周长为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点,证明:当直线变化时,总有TA与的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=+x在x=1处的切线方程为2x﹣y+b=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)若函数g(x)=f(x)+x2﹣kx,且g(x)是其定义域上的增函数,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若p是q的充分条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】集合A是由且备下列性质的函数组成的:
①函数的定义域是;②函数的值域是;
③函数在上是增函数,试分别探究下列两小题:
(1)判断函数数及是否属于集合A?并简要说明理由;
(2)对于(1)中你认为属于集合A的函数,不等式
是否对于任意的恒成立?若成立,请给出证明;若不成立,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.
(1)求证:圆C1和圆C2相交;
(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com