精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是首项为15的等比数列,其前n项的和为Sn , 若S3 , S5 , S4成等差数列,则公比q= , 当{an}的前n项的积达到最大时n的值为

【答案】;4
【解析】解:①数列{an}的公比为q,∵S3 , S5 , S4成等差数列,
∴2S5=S3+S4 , q≠1,
∴a4+2a5=0,
∴a4+2a4q=0,a4≠0,
解得q=
②由①可得:an=
∴{an}的前n项的积Tn=15n× =15n×
=15×
当n=4时, = ,当n为偶数且大于4时,0<
可得:T1=15,T2= ,T3= ,T4= ,T5=155× ,…,
可得:当n=4时,Tn取得最大值.
【考点精析】通过灵活运用等比数列的通项公式(及其变式),掌握通项公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是(  )
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= + )+2.
(1)求曲线C的方程;
(2)动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】α、β是两个平面,mn是两条直线,有下列四个命题:
①如果mnmαnβ , 那么αβ.
②如果mαnα , 那么mn.
③如果αβm α , 那么mβ.
④如果mnαβ , 那么mα所成的角和nβ所成的角相等.
其中正确的命题有.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合S={x|x>1},T={x||x﹣1|≤2},则(RS)∪T(
A.(﹣∞,3]
B.[﹣1,1]
C.[﹣1,3]
D.[﹣1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1.
(1)求a,b的值;
(2)设 ,若关于x的方程 在(﹣∞,0)∪(0,+∞)上有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 则下列不可能成立的(
A.a2016(S2016﹣S2015)=0
B.a2016(S2016﹣S2014)=0
C.(a2016﹣a2013)(S2016﹣S2013)=0
D.(a2016﹣a2012)(S2016﹣S2012)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2为椭圆 的左、右焦点,F2在以 为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.

(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为(
A.48
B.16
C.32
D.16

查看答案和解析>>

同步练习册答案