精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求函数的单调增区间;

2)设函数 若函数的最小值是的值;

3若函数 的定义域都是对于函数的图象上的任意一点在函数的图象上都存在一点,使得其中是自然对数的底数, 为坐标原点的取值范围

【答案】1)(2

【解析】试题分析:求函数的单调区间可利用求导完成,求函数的最值可通过求导研究函数的单调性求出极值,并与区间端点函数值比较得出最值;解决问题,先求出斜率的取值范围,根据垂直关系得出斜率的取值范围,转化为恒成立问题,借助恒成立思想解题.

试题解析:

1)当时,

因为上单调增,且

所以当时, ;当时,

所以函数的单调增区间是

2,则,令

时, ,函数上单调减;

时, ,函数上单调增

所以

,即时,

函数的最小值

,解得(舍),所以

,即时,

函数的最小值,解得(舍)

综上所述, 的值为

3)由题意知,

考虑函数,因为上恒成立,

所以函数上单调增,故

所以,即上恒成立,

上恒成立

,则上恒成立,

所以上单调减,所以

上恒成立,

所以上单调增,所以

综上所述, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,则(

A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为

1求动点的轨迹的方程;

2过动点作曲线的两条切线,切点分别为 ,求证: 的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为ɑ 的正方体ABCD﹣A1B1C1D1中,E、F、G分别是CB.CD.CC1的中点.

(1)求直线 A1C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F为CE上的点,且BF⊥平面ACE,AC,BD交于G点

(1)求证:AE∥平面BFD
(2)求证:AE⊥平面BCE
(3)求三棱柱C﹣BGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求证:平面PAC⊥平面PCD;
(2)若E是PD的中点,求平面BCE将四棱锥P﹣ABCD分成的上下两部分体积V1、V2之比.

查看答案和解析>>

同步练习册答案