精英家教网 > 高中数学 > 题目详情
13、平行六面体ABCD-A1B1C1D1中,求证:CD1所在的直线与BC1所在的直线是异面直线.
分析:直接证明CD1所在的直线与BC1所在的直线是异面直线,比较困难,可以考虑反证法,假设CD1所在的直线与BC1所在的直线不是异面直线.设直线CD1与BC1共面α;然后推出矛盾的结论即可.
解答:证明:用反证法,
假设CD1所在的直线与BC1所在的直线不是异面直线.
设直线CD1与BC1共面α.
∵C,D1∈CD1,B,C1∈BC1,∴C,D1,B,C1∈α.
∵CC1∥BB1,∴CC1,BB1确定平面BB1C1C,
∴C,B,C1∈平面BB1C1C.
∵不共线的三点C,B,C1只有一个平面,
∴平面α与平面BB1C1C重合.
∴D1∈平面BB1C1C,矛盾.
因此,假设错误,即CD1所在的直线与BC1所在的直线是异面直线.
点评:本题考查异面直线的证明方法,考查学生应用反证法的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平行六面体ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB,AD,AA1的夹角都是60° 则
AC1
BD1
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1(底面是平行四边形的四棱柱)
①求证:平面AB1D1∥平面BDC1
②若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD的中点,AC1∩BD1=0,求证:OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南充模拟)平行六面体ABCD-A1B1C1D1的六个面都是菱形,则点D1在面ACB1上的射影是△ACB1 的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图已知平行六面体ABCD-A′B′C′D′,E、F、G、H分别是棱A′D′、D′C′、C′C和AB的中点,求证E、F、G、H四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若A1AB=∠A1AD=600,且A1A=3,则A1C的长为
 

查看答案和解析>>

同步练习册答案