精英家教网 > 高中数学 > 题目详情
12.已知$f(x)=\sqrt{3}sinxcos({x+\frac{π}{6}})+cosxsin({x+\frac{π}{3}})+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$.
(Ⅰ)当$x∈({0,\frac{π}{2}})$时,求f(x)的值域;
(Ⅱ)已知$\frac{π}{12}<α<\frac{π}{3}$,$f(α)=\frac{6}{5}$,$-\frac{π}{6}<β<\frac{π}{12}$,$f(β)=\frac{10}{13}$,求cos(2α-2β).

分析 (Ⅰ)展开两角和的正弦和余弦,再由辅助角公式化积,由x的范围求得相位的范围,则答案可求;
(Ⅱ)由已知求得sin$(2α+\frac{π}{3})$,sin($2β+\frac{π}{3}$),进一步求出对应的余弦值,利用配角方法求得cos(2α-2β).

解答 解:(I)$f(x)=\sqrt{3}sinxcos({x+\frac{π}{6}})+cosxsin({x+\frac{π}{3}})+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$
=$\sqrt{3}sinx(cosxcos\frac{π}{6}-sinxsin\frac{π}{6})$$+cosx(sinxcos\frac{π}{3}+cosxsin\frac{π}{3})+\sqrt{3}×\frac{1+cos2x}{2}-\frac{\sqrt{3}}{2}$
=$\frac{3}{2}sinxcosx-\frac{\sqrt{3}}{2}si{n}^{2}x+\frac{1}{2}sinxcosx+\frac{\sqrt{3}}{2}co{s}^{2}x$$+\frac{\sqrt{3}}{2}cos2x$=$2sin(2x+\frac{π}{3})$,
∵$x∈({0,\frac{π}{2}})$,∴2x+$\frac{π}{3}$∈($\frac{π}{3},\frac{4π}{3}$),
则$2sin(2x+\frac{π}{3})$∈$(-\sqrt{3},2]$;
(II)∵$\frac{π}{12}<α<\frac{π}{3}$,$f(α)=\frac{6}{5}$,
∴$2sin(2α+\frac{π}{3})=\frac{6}{5}$,∴sin$(2α+\frac{π}{3})$=$\frac{3}{5}$,
$2α+\frac{π}{3}$∈($\frac{π}{2},π$),则$cos(2α+\frac{π}{3})$=$-\frac{4}{5}$;
∵$-\frac{π}{6}<β<\frac{π}{12}$,$f(β)=\frac{10}{13}$,
∴$2sin(2β+\frac{π}{3})=\frac{10}{13}$,∴$sin(2β+\frac{π}{3})=\frac{5}{13}$,
$2β+\frac{π}{3}$∈(0,$\frac{π}{2}$),则$cos(2β+\frac{π}{3})$=$\frac{12}{13}$.
∴cos(2α-2β)=cos[(2$α+\frac{π}{3}$)-(2$β+\frac{π}{3}$)]
=cos(2$α+\frac{π}{3}$)cos(2$β+\frac{π}{3}$)+sin(2$α+\frac{π}{3}$)sin(2$β+\frac{π}{3}$)
=$-\frac{4}{5}×\frac{12}{13}+\frac{3}{5}×\frac{5}{13}$=$-\frac{33}{65}$.

点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数);在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=2sinθ;
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率$k∈[1,\sqrt{3})$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知过抛物线方程y2=2px,过焦点F的直线l斜率为k(k>0)与抛物线交于A,B两点,满足$\frac{1}{{|{\overrightarrow{AF}}|}}+\frac{1}{{|{\overrightarrow{FB}}|}}=1$,又$\overrightarrow{AF}=2\overrightarrow{FB}$,则直线l的方程为y=2$\sqrt{2}$(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,当$x∈(0,\frac{π}{2})$时,与函数$y={x^{-\frac{1}{3}}}$单调性相同的函数为(  )
A.y=cosxB.$y=\frac{1}{cosx}$C.y=tanxD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$α+β=\frac{2π}{3},α>0,β>0$,当sinα+2sinβ取最大值时α=θ,则cosθ=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若全集U={1,2,3,4,5},A={2,4,5},B={1,2,5},则(∁UA)∩B=(  )
A.{2,5}B.{1,3,4}C.{1,2,4,5}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某班现有学生40人,其中15人喜爱篮球运动,20人喜爱排球运动,另有10人对这两项运动都不感兴趣(即均不喜爱),则该班喜爱排球运动但不喜爱蓝球运动的人数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆x2+y2=4与圆x2+y2-6x+8y-24=0的位置关系是(  )
A.相交B.相离C.内切D.外切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+2x,x∈[-2,1]时的值域为[-1,3].

查看答案和解析>>

同步练习册答案