精英家教网 > 高中数学 > 题目详情
11.在△ABC 中,角 A、B、C 所对的边分别为a、b、c,且满足c=2$\sqrt{3}$,c cos B+( b-2a )cos C=0.
(1)求角 C 的大小;
(2)求△ABC 面积的最大值.

分析 (1)已知等式利用正弦定理化简,整理求出cosC的值,即可确定出C的度数;
(2)利用正弦定理表示出a,b,进而表示出三角形面积,求出面积最大值即可.

解答 解:(1)已知等式ccosB+(b-2a)cosC=0,
利用正弦定理化简得:sinCcosB+sinBcosC-2sinAcosC=0,
即sinCcosB+sinBcosC=2sinAcosC,
∴sin(B+C)=sinA=2sinAcosC,
∵sinA≠0,
∴cosC=$\frac{1}{2}$,
则C=$\frac{π}{3}$;
(2)由正弦定理得$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4,
∴a=4sinA,b=4sinB,
∵A+B=$\frac{2π}{3}$,即B=$\frac{2π}{3}$-A,
∴S△ABC=$\frac{1}{2}$absinC=4$\sqrt{3}$sinAsinB=4$\sqrt{3}$sinAsin($\frac{2π}{3}$-A)=2$\sqrt{3}$sin(2A-$\frac{π}{6}$)+$\sqrt{3}$,
当2A-$\frac{π}{6}$=$\frac{π}{2}$,即A=$\frac{π}{3}$时,Smax=3$\sqrt{3}$.

点评 此题考查了余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.观察下列等式1=12,12-22=-3,12-22+32=6,12-22+32-42=-10照此规律,第100个等式12-22+32-42+…-1002=-5050.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥-2\\ x-2y≥-2\end{array}\right.$,则z=2x+y的最大值是(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=$\frac{sinx}{|tanx|}$(0<x<π,x≠$\frac{π}{2}$)的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.古希腊数学家把1,3,6,10,15,21,…叫做三角形,它有一定的规律性,第2016个三角形与第2015个三角形的差为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将点的直角坐标(-2,2$\sqrt{3}$)化为极坐标为(  )
A.(4,$\frac{2}{3}$π)B.(-4,$\frac{2}{3}$π)C.(-4,$\frac{1}{3}$π)D.(4,$\frac{1}{3}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的不等式x2+ax-2<0在区间[1,4]上有解,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面xOy内,动点P到点F($\sqrt{2}$,0)的距离与它到直线x=2$\sqrt{2}$的距离之比为$\frac{{\sqrt{2}}}{2}$;
(1)求动点P的轨迹方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)为奇函数.则函数y=x${\;}^{\frac{1}{5}}$f(x)的图象关于(  )
A.原点对称B.x轴对称C.y轴对称D.直线y=x对称

查看答案和解析>>

同步练习册答案