精英家教网 > 高中数学 > 题目详情
两等差数列{an}、{bn}的前n项和分别为Sn、Tn,
Sn
Tn
=
5n+3
2n+7
,则
a5
b5
的值是(  )
A、
28
17
B、
48
25
C、
53
27
D、
23
15
分析:根据等差数列的性质知,求两个数列的第五项之比,可以先写出两个数列的前9项之和之比,代入数据做出比值.
解答:解:∵等差数列{an}和{bn}的前n项和分别为Sn和Tn
Sn
Tn
=
5n+3
2n+7

a5
b5
=
9a5
9b5
=
s9
T9
=
48
25

故选B.
点评:本题考查等差数列的性质,是一个基础题,题目只要看出数列的基本量的运算,这种题目一般是一个送分题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两等差数列{an},{bn}的前n项和分别为Sn,Tn,且
Sn
Tn
=
2n+1
n+2
,则
a8
b7
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an}和{bn},前n项和分别为Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,则
a2+a20
b7+b15
=
149
24
149
24

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an},{bn},前n项和分别为Sn、Tn
Sn
Tn
=
7n+5
n+3
,则
a7
b7
=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an}、{bn}的前n项和的比
Sn
Tn
=
5n+3
2n+7
,则
a5
b5
的值是
48
25
48
25

查看答案和解析>>

科目:高中数学 来源: 题型:

若两等差数列{an}、{bn}的前n项和分别为sn,sn′,且
sn
s
/
n
=
2n-1
3n+8
,则
a5
b5
的值为
 

查看答案和解析>>

同步练习册答案