精英家教网 > 高中数学 > 题目详情
20.已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,满足f(x8)+f(x9)+f(x10)+f(x11)=0,则x2015的值为4011.

分析 设x8=a,则x9=a+2,x10=a+4,x11=a+6,则f(a)+f(a+2)+f(a+4)+f(a+6)=0,结合奇函数关于原点的对称性可知,f(a)+f(a+6)=0,f(a+2)+f(a+4)=0.所以f(a+3)=0=f(0),x8=-3.设数列{xn}通项xn=x1+(n-1).x8=x1+14=-3.x1=-17.通项xn=2n-19.由此能求出x2015的值.

解答 解:设x8=a,则x9=a+2,x10=a+4,x11=a+6,
∴f(a)+f(a+2)+f(a+4)+f(a+6)=0,
且f(a)<f(a+2)<f(a+4)<f(a+6),
∴f(a)<0且f(a+6)>0.
结合奇函数关于原点的对称性可知,f(a)+f(a+6)=0,
f(a+2)+f(a+4)=0.
∴f(a+3)=0=f(0),即a+3=0.
∴x8=-3.
设数列{xn}通项xn=x1+2(n-1).
∴x8=x1+14=-3.解得x1=-17.
∴通项xn=2n-19.
∴x2015=2×2015-19=4011.
故答案为:4011.

点评 本题考查函数的性质和运用,考查等差数列的性质和应用,解题时要认真审题,仔细解答,注意对称性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若双曲线经过点$(6,\sqrt{3})$,且其渐近线方程为y=±$\frac{1}{3}$x,则此双曲线的标准方程$\frac{x^2}{9}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,A、B、C的对边分别是a,b,c,(a2+c2-b2)tanB=$\frac{4\sqrt{2}}{3}$ac.
(1)求sinB的值;
(2)若b=2,S△ABC=$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,函数f(x)=min{|x-1|,-x2+11},若集合A={x|f(x)=m}中有4个元素,则实数m的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知k为实数,解关于x的不等式(kx-k2-1)(x-2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,矩形ABCD中,AB=2AD=2,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,在△ADE翻折的过程中,有下列命题:
①BM是定值;
②点M在表面积为5π的球面上运动;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE;
⑤三棱锥A1-CDE体积的最大值是$\frac{\sqrt{2}}{6}$.
其中,所有正确命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某城区有大学生3500人、中学生4000人,小学生4500人,为掌握各类学生的消费情况,现按分层抽样方法抽取一个容量为300的样本,应抽取中学生100人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三棱锥的三条棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为(  )
A.$\frac{14}{3}$B.2$\sqrt{17}$C.$\frac{6\sqrt{22}}{11}$D.$\frac{2\sqrt{17}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.符合条件{1,2}?P?{1,2,3,4}的集合P有2.

查看答案和解析>>

同步练习册答案