精英家教网 > 高中数学 > 题目详情
已知椭圆方程
x2
16
+
y2
12
=1,F
是椭圆的左焦点,直线l为对应的准线,直线l与x轴交于P点,MN为椭圆的长轴,过P点任作一条割线AB(如图),则∠AFM与∠BFN的大小关系为(  )
分析:当AB斜率为0时,显然∠AFM=∠BFN成立;当AB斜率不为0时,设出直线方程,代入椭圆方程,利用韦达定理,进而可得直线AF,BF的斜率的和为0,从而可得结论.
解答:解:当AB的斜率为0时,显然∠AFM=∠BFN=0.
当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my-8,
代入椭圆方程,整理得(3m2+4)y2-48my+144=0
则△=(48m)2-4×144(3m2+4),
∴y1+y2=
48m
3m2+4
,y1y2=
144
3m2+4

∴kAF+kBF=
y1
x1+2
+
y2
x2+2
=
2my1y2-6(y1+y2)
(my1-6)(my2-6)
=
2m×
144
3m2+4
-6×
48m
3m2+4
(my1-6)(my2-6)
=0
∴kAF+kBF=0,从而∠AFM=∠BFN.
综上可知:恒有∠AFM=∠BFN.
故选C.
点评:本题考查直线与椭圆的位置关系,考查韦达定理的运用,考查斜率的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
16
+
y2
12
=1
,双曲线C2与C1具有相同的焦点,且离心率互为倒数.
①求双曲线C2的方程;
②圆C:x2+y2=r2(r>0)与两曲线C1、C2交点一共有且仅有四个,求r的取值范围;是否存在r,使得顺次连接这四个交点所得到的四边形是正方形?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
16
+
y2
4
=1
,过点(2,0)作圆x2+y2=1的切线l交椭圆C于A,B两点.
(1)求切线l的方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
16
+
y2
m2
=1(m>0)
,直线y=
2
2
x
与该椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点,则m的值为
 

查看答案和解析>>

同步练习册答案