精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的一元二次函数,分别从集合中随机取一个数得到数对

1)若,求函数有零点的概率;

2)若 ,求函数在区间上是增函数的概率.

【答案】(1);(2

【解析】

1)用列举法分别列举出“分别从集合中随机取一个数得到的数对”和使函数有零点的数对所包含的基本事件,再根据古典概型的计算公式即可得出结果;

2)先根据求出所有的基本事件构成的平面区域的面积;再求出函数在区间上是增函数所对应的平面区域的面积,由几何概型的计算公式即可得出结果.

1)由已知得

则分别从集合中随机取一个数得到数对的所有可能的情况有: ,共有18对.

要使有零点,则需满足,可得满足条件的有序数对有

,共有6对.

由古典概型概率公式可得所求概率为

故函数有零点的概率为

2)由题意得所有的基本事件构成的平面区域为

要使单调递增,则需满足,即

函数在区间上是增函数为事件A,

则事件A包含的基本事件构成的平面区域为

由几何概型概率公式可得

故函数在区间上是增函数的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通项公式an;

(2)求数列{|an-n-2|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且定义域为.

(1)求关于的方程上的解;

(2)若在区间上单调减函数,求实数的取值范围;

(3)若关于的方程上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1),求的值

(2),求的值;

(3)若展开式中所有无理项的二项式系数和,数列是各项都大于1的数组成的数列,试用数学归纳法证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,点(an , bn)在函数f(x)=2x的图象上(n∈N*).
(1)若a1=﹣2,点(a8 , 4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn
(2)若a1=1,函数f(x)的图象在点(a2 , b2)处的切线在x轴上的截距为2﹣ ,求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数a使方程sinx+ cosx=a在闭区间[0,2π]上恰有三个解x1 , x2 , x3 , 则x1+x2+x3=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是( )

A. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内无零点

B. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内可能有零点,且零点个数为偶数

C. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内必有零点,且零点个数为奇数

D. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内必有零点,但是零点个数不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:

直径/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.
(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品
(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望EY;
(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望EZ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:

未过度使用

过度使用

合计

未患颈椎病

15

5

20

患颈椎病

10

20

30

合计

25

25

50

(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?

(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为,求的分布列及数学期望.

参考数据与公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案