精英家教网 > 高中数学 > 题目详情
f(x)=
1
2x+
2
,则f(-5)+f(-4)+…f(0)+…+f(5)+f(6)的值为
 
分析:此题数值较多,探究其形式发现,此十二个数的自变量可分为六组,每组的自变量的和为1,故解题思路寻求到--即验证自变量的和为1时,两数的函数值的和是多少.
解答:解:令x+y=1,则f(x)+f(y)=
1
2x+
2
+
1
2y+
2

=
1
2x+
2
+
1
21-x+
2
=
1
2x+
2
+
1
21-x+
2

=
1
2x+
2
+
2x
2
(2x+
2
)
=
1
2x+
2
(1+
2x
2
)═
1
2x+
2
×
2
+2x
2
=
2
2

故f(-5)+f(-4)+…f(0)+…+f(5)+f(6)=6×
2
2
=3
2

故应填3
2
点评:本题考查根据题设条件探究规律的能力与意识,此类题最明显的标志是数据较多,一一求值运算较繁,如果想到了探究其规律,则会使解题过程变得简单,请注意此类题的特征及做题方式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设f(x)=
1
2x+
2
,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为
9
2
2

其中,结论正确的是
 
.(将所有正确结论的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
2x+
2
,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=
1
2x+
2
,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设f(x)=
1
2x+
2
,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为
9
2
2

其中,结论正确的是 ______.(将所有正确结论的序号都写上)

查看答案和解析>>

同步练习册答案