精英家教网 > 高中数学 > 题目详情
(2012•许昌县一模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+b2=3c2,则cosC最小值为
2
3
2
3
分析:利用余弦定理可得a2+b2=c2+2abcosC,与已知条件a2+b2=3c2联立,再利用基本不等式即可求得cosC最小值.
解答:解:在△ABC中,由余弦定理得:a2+b2=c2+2abcosC,①
又a2+b2=3c2
∴c2=
1
3
(a2+b2)代入①式有:
a2+b2=
1
3
(a2+b2)+2abcosC,
∴cosC=
2
3
(a2+b2)
2ab
2
3
×2ab
2ab
=
2
3
(当且仅当a=b时取“=”).
∴cosC最小值为
2
3

故答案为:
2
3
点评:本题考查余弦定理与基本不等式的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌县一模)若α是锐角,且cos(α+
π
3
)=-
3
3
,则sinα的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)某学校对高一新生的体重进行了抽样调查.右图是根据抽样调查后的数据绘制的频率分布直方图,其中体重(单位:kg)的范围是[45,70],样本数据分组为[45,50),[50,55),[55,60),[60,65),[65,70],已知被调查的学生中体重不足55kg的有36,则被调查的高一新生体重在50kg至65kg的人数是.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)设函数f(x)=sin(2x-
π
2
)
,x∈R,则f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为(  )

查看答案和解析>>

同步练习册答案