已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234577051033.png)
.
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
时,试确定函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在其定义域内的单调性;
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
上的最小值;
(3)试证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234577671565.png)
.
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457829459.png)
,单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
;
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234578921861.png)
;(3)详见解析.
试题分析:(1)先求出函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的定义域求出,然后将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
代入函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的解析式,求出导数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457954527.png)
,并利用导数求出函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的减区间与增区间 ;(2)求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457954527.png)
,并求出方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458001607.png)
的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458017452.png)
,对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458032283.png)
的符号以及
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458048353.png)
是否在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
内进行分类讨论,结合函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的单调性确定函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
上的最小值;(3)利用分析法将不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458110886.png)
等价转化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458126649.png)
,然后令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458141522.png)
,将原不等式等价转化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458188561.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
,利用(1)中的结论进行证明.
试题解析:(1)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458251566.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458282723.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458313893.png)
,
解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458344435.png)
;解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458360622.png)
,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458375360.png)
,
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
的单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457829459.png)
,单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
;
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458438812.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458453999.png)
,
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458469402.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458485677.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
,此时函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
上单调递减,
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458563358.png)
处取得最小值,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234585781209.png)
;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458594387.png)
时,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458609843.png)
,
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458625469.png)
时,即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458641569.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458485677.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
,此时函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
上单调递减,
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458563358.png)
处取得最小值,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234585781209.png)
;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458750552.png)
,即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458765461.png)
时,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458797569.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458812551.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458360622.png)
,
此时函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458017452.png)
处取得极小值,亦即最小值,
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234589061913.png)
,
综上所述,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234589211866.png)
;
(3)要证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458110886.png)
,即证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234589531028.png)
,即证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458968916.png)
,
即证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458126649.png)
,
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458999642.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459015455.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459031491.png)
,故原不等式等价于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459046869.png)
,
即不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459062641.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459077460.png)
上恒成立,
由(1)知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458282723.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
上单调递增,
即函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459077460.png)
上单调递增,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459296702.png)
,
故有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458188561.png)
,因此不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459062641.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459077460.png)
上恒成立,故原不等式得证,
即对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459358531.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458110886.png)
.
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024746911812.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024746926495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024746942566.png)
是增函数,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024746957283.png)
的取值范围;
(2)已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024746973388.png)
,对于函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024746926495.png)
图象上任意不同两点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747004654.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747004681.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747020438.png)
,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747035375.png)
的斜率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747051313.png)
,记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747067659.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240247470821011.png)
求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024747098643.png)
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036132431.png)
,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036147698.png)
.
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036147386.png)
,求曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036163600.png)
在点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036178567.png)
处的切线方程;
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036194495.png)
的单调区间;
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036210398.png)
时,求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036194495.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024036241391.png)
上的最小值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知函数f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023535987338.png)
x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536081242.png)
-ax+(a-1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536096344.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536112370.png)
。
(1)讨论函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536127447.png)
的单调性;(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536143392.png)
,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536159624.png)
,
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536174195.png)
,x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536190240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536190246.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536205535.png)
,x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536174195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536237237.png)
x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536190240.png)
,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023536268869.png)
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233323571093.png)
.
(Ⅰ)如果函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332388562.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332404474.png)
上是单调函数,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332419283.png)
的取值范围;
(Ⅱ)是否存在正实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332419283.png)
,使得函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240233324501019.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332466481.png)
内有两个不同的零点(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332497613.png)
是自然对数的底数)?若存在,求出实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023332419283.png)
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232094773.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232094512.png)
的图象经过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232109409.png)
和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232125456.png)
两点,如图所示,且函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
的值域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232156378.png)
.过该函数图象上的动点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232156591.png)
作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232172262.png)
轴的垂线,垂足为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232187298.png)
,连接
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232203369.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240232322193737.png)
(I)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232141448.png)
的解析式;
(Ⅱ)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232234521.png)
的面积为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232250321.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023232250321.png)
的最大值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747581827.png)
,(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747596424.png)
)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747612323.png)
处取得最小值.
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747627312.png)
的值;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747643447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747659635.png)
处的切线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747690548.png)
,求证:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747705393.png)
时,曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747721562.png)
不可能在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747690548.png)
的下方;
(Ⅲ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747752499.png)
,(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747768708.png)
)且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747783649.png)
,试比较
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240227477991121.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022747830631.png)
的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021855947963.png)
。
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021855963447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021855978514.png)
是增函数,求b的取值范围;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021855963447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021856010323.png)
时取得极值,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021856041516.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021856056573.png)
恒成立,求c的取值范围.
查看答案和解析>>