(本题满分16分)
如图,椭圆C:+=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点(,)在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:解答题
(12分)已知抛物线:过点.(1)求抛物线的方程,并求其准线方程;
(2)是否存在平行于(为坐标原点)的直线,使得直线与抛物线有公共点,且直线与的
距离等于?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)(理科)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,交直线于点,且,,
求证:为定值,并计算出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,椭圆:的左焦点为,右焦点为,离心率.过的直线交椭圆于两点,且△的周长为.
(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线:与椭圆有且只有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆上的动点到焦点距离的最小值为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,为椭圆上一点, 且满足
(为坐标原点),当 时,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知长方形,,,以的中点为
原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(2)设椭圆上任意一点为P,在x轴上有一个动点Q(t,0),其中,探究的最
小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com