精英家教网 > 高中数学 > 题目详情

设函数 
(1)当时,求函数的最大值;
(2)令)其图象上任意一点处切线的斜率 恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

(1);(2); (3)

解析试题分析:(1)利用导数分析函数的单调性,然后由单调性确定函数的最值;(2)先由导函数求出点P处的切线斜率,然后由恒成立条件,转化为求k的最大值,从而求出实数的取值范围;(3)构建函数模型,利用函数的增减性,分析出方程有唯一解,即函数有唯一零点的情况,从而得出正数m的值.
试题解析:(1)依题意,知f(x)的定义域为(0,+∞),

, 解得x=1,(∵x>0),
时,,此时f(x)单调递增,
当x>1时,,此时f(x)单调递减,
所以f(x)的极大值为,此即为最大值.
(2),则有上恒成立,
所以,当取得最大值,所以.
(3)因为方程有唯一实数解,所以有唯一实数解,
,则,令
因为
上单调递减;
上单调递增;

,所以
因为m>0,所以,(*)
设函数,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解,
因为h(1)=0,所以方程(*)的解为,即,解得.
考点:1.利用导数求函数的最值;2.用化归与转化思想处理恒成立问题;3.利用函数模型处理方程的实根分布

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1设
(1)当时,求f(x)的单调区间;
(2)求f(x)的零点个数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中为常数.
(Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数上的最小值;
(Ⅱ)若函数上既有极大值又有极小值,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)当时,求曲线在点处的切线方程;
(2)若处有极值,求的单调递增区间;
(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数上的最小值;
(2)若函数有两个不同的极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,为自然对数的底数.
(1)求的单调区间;
(2)若,且在区间上的最大值为,求的值;
(3)当时,试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数,当万元时,万元;当万元时,万元.(参考数据:
(Ⅰ)求的解析式;
(Ⅱ)求该景点改造升级后旅游利润的最大值.(利润=旅游收入-投入)

查看答案和解析>>

同步练习册答案