精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右顶点分别为A、B,点M为C上不同于A、B的任意一点,则直线MA、MB的斜率之积为(  )
A.$\frac{1}{4}$B.-4C.-$\frac{1}{4}$D.4

分析 求得A和B点坐标,求得直线MA和MB的斜率,由M在椭圆上,x02=4-4y02,即可求得k1•k2=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=-$\frac{1}{4}$.

解答 解:由题意得,椭圆C:$\frac{{x}^{2}}{4}$+y2=1焦点在x轴上,a=2,b=1,
设M(x0,y0)(y0≠0),A(-2,0),B(2,0),
直线MA的斜率k1=$\frac{{y}_{0}}{{x}_{0}+2}$,MB的斜率k2=$\frac{{y}_{0}}{{x}_{0}-2}$,
又点M在椭圆上,
∴$\frac{{x}_{0}^{2}}{4}+{y}_{0}^{2}=1$(y0≠0),x02=4-4y02
∴k1•k2=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=-$\frac{1}{4}$,
直线MA、MB的斜率之积-$\frac{1}{4}$,
故选C.

点评 本题考查椭圆的标准方程,以及椭圆的简单性质的应用,直线的斜率公式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x>-1},则下列选项正确的是(  )
A.0⊆AB.{0}⊆AC.∅∈AD.{0}∈A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数a,b均大于0,且$({\frac{1}{a}+\frac{1}{b}})\sqrt{{a^2}+{b^2}}≥2m-4$总成立,则实数m的取值范围是(-∞,2+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知tanα=-2,tan(α-β)=3,则tanβ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=logax(a>0且a≠1).
(1)若f(3a+4)≥f(5a),求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设g(x)=f(x)-3x+4,判断g(x)在(1,2)上零点的个数并证明:对任意λ>0,都存在μ>0,使得g(x)<0在x∈(λμ,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C1,C2均为中心在原点,焦点在x轴上的椭圆,离心率均为$\frac{{\sqrt{2}}}{2}$,其中C1的焦点坐标分别为(-1,0),(1,0),C2的左右顶点坐标为(-2,0),(2,0).
(Ⅰ)求椭圆C1,C2的方程;
(Ⅱ)若直线l与C1,C2相交于A,B,C,D四点,如图所示,试判断|AC|和|BD|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C 为菱形,B1C与BC1交于点O,AO⊥平面BB1C1C
(1)求证:平面ABC1⊥平面A1B1C;
(2)若AC⊥AB1,∠BCC1=120°,BC=1,求点B1到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,$AB=2AC,cosB=\frac{{2\sqrt{5}}}{5}$,点D在线段BC上.
(1)当BD=AD时,求$\frac{AD}{AC}$的值;
(2)若AD是∠A的平分线,$BC=\sqrt{5}$,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设ω>0,将函数f(x)=$\sqrt{2}$cosωx的图象向左平移$\frac{π}{2}$个单位,若所得的图象与原图象重合,则正数ω的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案