精英家教网 > 高中数学 > 题目详情
14.集合S={3,4,5},T={4,7,8},则S∪T=(  )
A.{4}B.{3,5,7,8}C.{3,4,5,7,8}D.{3,4,4,5,7,8}

分析 由已知条件利用并集的定义直接求解.

解答 解:∵集合S={3,4,5},T={4,7,8},
∴S∪T={3,4,5,7,8}.
故选:C.

点评 本题考查并集的求法,是基础题,解题时要注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设a>0,f(x)=$\frac{{2}^{x}}{a}$+$\frac{a}{{2}^{x}}$是定义在R上的偶函数.
(1)求实数a;
(2)求f(x)在x∈[-1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{xlnx}{x+1}$和g(x)=m(x-1),m∈R.
(Ⅰ)m=1时,求方程f(x)=g(x)的实根;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤g(x)恒成立,求m的取值范围;
(Ⅲ)求证:$\frac{4×1}{{4×{1^2}-1}}+\frac{4×2}{{4×{2^2}-1}}+\frac{4×3}{{4×{3^2}-1}}+…+\frac{4×1007}{{4×{{1007}^2}-1}}>ln2015$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=1+\frac{|x|-x}{2}({-2<x≤2})$.
(1)画出该函数的图象;
(2)写出该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=loga(a2x-4ax+4),0<a<1,则使f(x)>0的x的取值范围是(loga3,loga2)∪(loga2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=cos$\frac{2π}{3}cos(\frac{π}{2}+2x)$,则函数f(x)满足(  )
A.f(x)的最小正周期是2πB.当x∈$[-\frac{π}{6},\frac{π}{3}]$时,f(x)的值域为$[-\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{4}]$
C.f(x)的图象关于直线x=$\frac{3π}{4}$对称D.若x1≠x2,则f(x1)≠f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集A={x|1<x<2},B={x|x<a},满足A?B,则(  )
A.a≥2B.a≤1C.a≥1D.a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|2<x≤6},B={x|3<x<9}.
(1)分别求∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=1-2x(x∈[2,3])的值域为[-7,-3].

查看答案和解析>>

同步练习册答案