精英家教网 > 高中数学 > 题目详情
9.若Rt△ABC的斜边的两端点A,B的坐标分别为(-3,0)和(7,0),则直角顶点C的轨迹方程为(x-2)2+y2=25(y≠0).

分析 由于顶点C为Rt△ABC直角顶点,∴$\overrightarrow{AC}•\overrightarrow{BC}=0$,用坐标表示向量,进而可得轨迹方程,由于A,B,C构成直角三角形,要除去y=0的两点.

解答 解:设顶点C的坐标为(x,y),
∵C为直角顶点,∴$\overrightarrow{AC}•\overrightarrow{BC}=0$,
∴(x+3,y)•(x-7,y)=0,
即:(x-2)2+y2=25,
∵A,B,C构成直角三角形
∴除去y=0的两点.
∴方程为:(x-2)2+y2=25(y≠0)
故答案为:(x-2)2+y2=25(y≠0).

点评 本题的考点是轨迹方程,主要考查向量与解析几何的结合,关键是利用向量的数量积得出方程,必须注意把不符合条件的点舍去,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ln(4-x2),则f(x)的定义域为(-2,2),当x=0时,f(x)有最大值ln4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)是定义在R+上的增函数,且f(xy)=f(x)+f(y).
(1)求证:f(1)=0;
(2)若f(3)=1且f(a)>f(a-1)+1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}中,公比q=4,a1•a2•a3…•a30=430,那么a1•a4•a7…a28=4270

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+1,(a,b∈R)与x轴的两个交点分别是($\frac{1}{3}$,0),($\frac{1}{2}$,0).
(1)求实数a,b的值;
(2)若二次方程f(x)-m=0有两个不同的根,求实数m的取值范围;
(3)若函数g(x)=f(x)+k在区间[0,1]内有最大值为3,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=$\frac{x}{x+1}$(-4≤x≤-2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的函数f(x)满足f(x+1)=f(x)-1,当x∈[0,1),f(x)=x,则f(-8)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求f(3)的值:
(2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于任意x>0的实数,不等式4x+$\frac{1}{x}$>m2-1恒成立,则m的取值范围是($-\sqrt{5},\sqrt{5}$).

查看答案和解析>>

同步练习册答案