【题目】已知的内角、、的对边分别为、、,为内一点,若分别满足下列四个条件:
①;
②;
③;
④;
则点分别为的( )
A.外心、内心、垂心、重心B.内心、外心、垂心、重心
C.垂心、内心、重心、外心D.内心、垂心、外心、重心
科目:高中数学 来源: 题型:
【题目】在数列 中,已知 ,为常数.
(1)证明: 成等差数列;
(2)设 ,求数列的前n项和 ;
(3)当时,数列 中是否存在不同的三项成等比数列,
且也成等比数列?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点、,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点,且满足.
(1)求动点所在曲线的方程;
(2)过点作斜率为的直线交曲线于、两点,且满足,又点关于原点的对称点为点,求点、的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
则下列结论正确的是
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知城市周边有两个小镇、,其中乡镇位于城市的正东方处,乡镇与城市相距,与夹角的正切值为2,为方便交通,现准备建设一条经过城市的公路,使乡镇和分别位于的两侧,过和建设两条垂直的公路和,分别与公路交汇于、两点,以为原点,所在直线为轴,建立如图所示的平面直角坐标系.
(1)当两个交汇点、重合,试确定此时路段长度;
(2)当,计算此时两个交汇点、到城市的距离之比;
(3)若要求两个交汇点、的距离不超过,求正切值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l的方程为y=(-a-1)x +a-2.
(1)求直线过定点A的坐标;
(2)若l在两坐标轴上的截距相等,求l的方程;
(3)若l不经过第二象限,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com