【题目】港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为( )
A. 300,B. 300,C. 60,D. 60,
科目:高中数学 来源: 题型:
【题目】某手机专卖店对某市市民进行手机认可度的调查,在已购买手机的1000名市民中,随机抽取100名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
分组(岁) | 频数 |
5 | |
35 | |
10 | |
合计 | 100 |
(1)求频数分布表中,的值,并补全频率分布直方图;
(2)在抽取的这100名市民中,从年龄在、内的市民中用分层样的方法抽取5人参加手机宣传活动,现从这5人中随机选取2人各赠送一部手机,求这2人中恰有1人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①如果平面外一条直线与平面内一条直线平行,那么;
②过空间一定点有且只有一条直线与已知平面垂直;
③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直;
④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面.
其中真命题的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:
学时数 |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);
(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.
(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?
非十分爱好该课程者 | 十分爱好该课程者 | 合计 | |
男性 | |||
女性 | |||
合计 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线C关于轴对称,顶点为坐标原点,且经过点.
(1)求抛物线C的标准方程;
(2) 过点的直线交抛物线于M、N两点.是否存在定直线,使得l上任意点P与点M,Q,N所成直线的斜率,,成等差数列.若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(1)求的解析式及单调递减区间;
(2)是否存在常数,使得对于定义域内的任意, 恒成立,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占,三星销量约占,苹果销量约占),根据该图,以下结论中一定正确的是( )
A. 四个季度中,每季度三星和苹果总销量之和均不低于华为的销量
B. 苹果第二季度的销量小于第三季度的销量
C. 第一季度销量最大的为三星,销量最小的为苹果
D. 华为的全年销量最大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com