精英家教网 > 高中数学 > 题目详情
6.复数${m^2}-2m+\frac{{{m^2}+m-6}}{m}i$为纯虚数,则实数m的值为(  )
A.m≠2且m≠3B.m≠2,m≠3且m≠0C.m=3D.不存在

分析 复数${m^2}-2m+\frac{{{m^2}+m-6}}{m}i$为纯虚数,可得m2-2m=0,$\frac{{m}^{2}+m-6}{m}$≠0,m≠0,解出即可.

解答 解:∵复数${m^2}-2m+\frac{{{m^2}+m-6}}{m}i$为纯虚数,
∴m2-2m=0,$\frac{{m}^{2}+m-6}{m}$≠0,m≠0,
解得m∈∅.
故选:D.

点评 本题考查了纯虚数的定义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若直线2ax+by-2=0(a>0,b>0)始终平分圆x2+y2-2x-4y-1=0的面积,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.5B.7C.2$\sqrt{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.各顶点都在一个球面上的正四棱柱的高是2,体积是16,则这个球的表面积是(  )
A.16πB.20πC.24πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|-3≤x≤2},B={x|3M-1≤x≤2M+1},且A?B,则实数M的取值范围是-$\frac{2}{3}$≤M≤$\frac{1}{2}$或M>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实系数三次函数φ(x)=ax3+bx2+cx+d有三个正零点,且φ(0)<0.求证:2b3+9a2d-7abc≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xoy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(1)求圆C1与C2的公共弦所在直线方程;
(2)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1、C2的极坐标方程,并求出圆C1、C2的交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={y|y=x2-1,x∈R},B=$\{x|y=\sqrt{2x-4}\}$,则A∪B=[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a=(3,-1),\;\overrightarrow b=(-1,2),\;\overrightarrow c=(2,1)$,若$\overrightarrow a=x\overrightarrow b+y\overrightarrow c(x,y∈R)$,则x-y=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,a1=3,a4=24.若数列{$\frac{1}{{a}_{n}}$}的前n项和为$\frac{85}{128}$,则n等于 (  )
A.5B.6C.8D.10

查看答案和解析>>

同步练习册答案