精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=x3+ax2+bx的图象与直线 y=-3x+8相切于点P(2,2).
(1)求a,b的值;
(2)求函数 f (x)的极值.

分析 (1)求出原函数的导函数,得到f′(2),由f′(2)=-3,且f(2)=2联立方程组求得a,b的值,则函数解析式可求;
(2)分别由导函数大于0和小于0求得原函数的增区间及减区间,即可求出函数 f (x)的极值.

解答 解:(1)∵函数f(x)=x3+ax2+bx的图象与直线y=-3x+8相切于点P(2,2),
∴f'(2)=-3,f(2)=2.
∵f'(x)=3x2+2ax+b,
∴$\left\{\begin{array}{l}8+4a+2b=2\\ 3×{2^2}+2a×2+b=-3\end{array}\right.$解得$\left\{\begin{array}{l}a=-6\\ b=9\end{array}\right.$.
(2)由(1)可知f(x)=x3-6x2+9x,
∴f'(x)=3x2-12x+9=3(x-1)(x-3),
令f′(x)=0,得x=1或x=3
令f'(x)>0,得x<1或x>3; 令f'(x)<0,得1<x<3.
∴f(x)的单调递增区间为(-∞,1),(3,+∞);单调递减区间为(1,3).
∴当x=1时,函数f(x)取得极大值f(1)=4,
当x=3时,函数f(x)取得极小值f(3)=0.

点评 本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数研究函数的单调性与极值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2bx-3b+1,在(-1,1)上存在零点,实数b的取值范围是($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间为(  )
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)和(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆的中心在原点,对称轴为坐标轴,离心率e=$\frac{1}{2}$,且它的一个焦点在抛物线y2=-4x的准线上,则此椭圆的标准方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{8}$+$\frac{y^2}{6}$=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过点A(0,1)且斜率为k的直线l与圆C:(x-3)2+(y-4)2=1交于M,N点.
(1)求k的取值范围;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=24,其中O为坐标原点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,则(  )
A.a>-2B.a≥-2C.a<-2D.a≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=alnx+$\frac{1}{2}$bx2+x.(a,b∈R).
(1)若函数f(x)在x1=1,x2=2处取得极值,求a,b的值,并说明分别取得的极大值还是极小值;
(2)若函数f(x)在(1,f(1))处的切线的斜率为1,且对任意x∈[1,e],都使得f(x)-x≤(a+2)(-$\frac{1}{2}$x2+x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x3-12x+1,则f(x)的极大值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a>1,b>0,若a+b=2,则$\frac{1}{a-1}$+$\frac{2}{b}$的最小值为(  )
A.2$\sqrt{2}$B.6C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

同步练习册答案