【题目】如图所示,某街道居委会拟在地段的居民楼正南方向的空白地段上建一个活动中心,其中米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形,上部分是以为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长不超过米,其中该太阳光线与水平线的夹角满足.
(1)若设计米,米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计与的长度,可使得活动中心的截面面积最大?(注:计算中取3)
【答案】(Ⅰ)能(Ⅱ)米且米
【解析】
试题分析:(Ⅰ)由条件知研究直线与圆相切,所以建立坐标系:以点A为坐标原点,AB所在直线为x轴,,确定圆的方程,求出切线方程,解出切线与直线交点,最后判断是否满足不超过米这个条件(Ⅱ)同(1)建立坐标系,设立圆的方程:圆心为,半径为,求出切线方程,解出切线与直线交点,根据 不超过米这个条件列参数限制条件,最后根据活动中心的截面面积关系式求最值:
试题解析:解:如图所示,以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.
(1)因为,,所以半圆的圆心为,
半径.设太阳光线所在直线方程为,
即, ...............2分
则由,
解得或(舍).
故太阳光线所在直线方程为, ...............5分
令,得米米.
所以此时能保证上述采光要求. ...............7分
(2)设米,米,则半圆的圆心为,半径为.
方法一:设太阳光线所在直线方程为,
即,由,
解得或(舍). ...............9分
故太阳光线所在直线方程为,
令,得,由,得. ...............11分
所以
.
当且仅当时取等号.
所以当米且米时,可使得活动中心的截面面积最大. .............16分
方法二:欲使活动中心内部空间尽可能大,则影长EG恰为米,则此时点为,
设过点G的上述太阳光线为,则所在直线方程为y-=-(x-30),
即. ........10分
由直线与半圆H相切,得.
而点H(r,h)在直线的下方,则3r+4h-100<0,
即,从而. ...............13分
又.
当且仅当时取等号.
所以当米且米时,可使得活动中心的截面面积最大. ...........16分
科目:高中数学 来源: 题型:
【题目】在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为、和(单位:万件),依据销售统计数据发现形成如下营销趋势:,(其中,为常数,),已知万件,万件,万件.
(1)求,的值,并写出与满足的关系式;
(2)证明:逐月递增且控制在2万件内;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为- .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个路灯的平面设计示意图,其中曲线段AOB可视为抛物线的一部分,坐标原点O为抛物线的顶点,抛物线的对称轴为y轴,灯杆BC可视为线段,其所在直线与曲线AOB所在的抛物线相切于点B.已知AB=2分米,直线轴,点C到直线AB的距离为8分米.灯杆BC部分的造价为10元/分米;若顶点O到直线AB的距离为t分米,则曲线段AOB部分的造价为元. 设直线BC的倾斜角为,以上两部分的总造价为S元.
(1)①求t关于的函数关系式;
②求S关于的函数关系式;
(2)求总造价S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别是长轴长为 的椭圆C: 的左右焦点,A1 , A2是椭圆C的左右顶点,P为椭圆上异于A1 , A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣ .
(1)求椭圆C的方程;
(2)设过点F1且不与坐标轴垂直的直线C(2,2,0)交椭圆于A,B两点,线段AB的垂直平分线与B(2,0,0)轴交于点N,点N横坐标的取值范围是 ,求线段AB长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,,是数列的前项的和.
(1)求数列的通项公式;
(2)若,,成等差数列,,18,成等比数列,求正整数的值;
(3)是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.
(Ⅰ)求圆的标准方程;
(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com