精英家教网 > 高中数学 > 题目详情

【题目】在某班举行的“庆五一”联欢晚会开幕前已排好有8个不同节目的节目单,如果保持原来的节目相对顺序不变,临时再插进去三个不同的新节目,且插进的三个新节目按顺序出场,那么共有__________种不同的插入方法(用数字作答).

【答案】165

【解析】分析:根据题意,先由分步计数原理计算ABC三个节目插到8个节目之间的排法,又由倍分法分析可得答案.

详解:根据题意,原来有8个节目,有9个空位,

9个空位中任选1个,安排A节目,有9种情况,排好后有10个空位,

10个空位中任选1个,安排B节目,有10种情况,排好后有11个空位,

11个空位中任选1个,安排C节目,有11种情况,排好后有11个空位,

ABC的安排方法有9×10×11=990种,

又由三个新节目按A,B,C顺序出场,则不同的安排方法有×990=165种;

故答案为:165.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双曲线E: =1(a>0,b>0)的左、右焦点分别为F1、F2 , P是E坐支上一点,且|PF1|=|F1F2|,直线PF2与圆x2+y2=a2相切,则E的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sin(2x﹣ )的图象向左平移 个单位后,所得函数图象的一条对称轴为(
A.x=0
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:

月份

1

2

3

4

5

销售量 (万件)

3

6

4

7

8

利润 (万元)

19

34

26

41

46

1)从这五个月的利润中任选2分别记为 求事件 均不小于30”的概率

2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程

3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有两个相异实根,且,则实数的值等于( )

A. -2或2 B. -2 C. 2 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|+2|x+1|的最小值为m.
(1)求m的值;
(2)若a、b、c∈R, +c2=m,求c(a+b)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.

(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;

(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的数学期望.

参考公式:,其中

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆C: + =1(a>b>0)的焦距为2,直线y=x被椭圆C截得的弦长为

(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(x0 , y0)是椭圆C上的动点,过原点O引两条射线l1 , l2与圆M:(x﹣x02+(y﹣y02= 分别相切,且l1 , l2的斜率k1 , k2存在.
①试问k1k2是否定值?若是,求出该定值,若不是,说明理由;
②若射线l1 , l2与椭圆C分别交于点A,B,求|OA||OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案