精英家教网 > 高中数学 > 题目详情
已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为fn′(x),且满足:f2′[x1+
1
λ
(x2-x1)]=
f2(x2)-f2(x1)
x2-x1
,λ,x1x2
为常数.
(Ⅰ)试求λ的值;
(Ⅱ)设函数f2n-1(x)与fn(1-x)的乘积为函数F(x),求F(x)的极大值与极小值;
(Ⅲ)若gn(x)=ex•fn(x),试证明关于x的方程
gn(1+x)
gn+1(1+x)
=
λn-1
λn+1-1
在区间(0,2)上有唯一实数根;记此实数根为x(n),求x(n)的最大值.
分析:(1)利用求导公式求函数的导数,令n=2,代入等式求λ;
(2)利用导数公式求函数的导数,画图求函数的单调性,根据导数求极值;
(3)利用导数求导和利用数学归纳法,在当a=1时和当a≥2时的条件下证明.
解答:解:(1)f2′(x)=2x,∴2[x1+
1
λ
(x2-x1)]=
x
2
2
-
x
2
1
x2-x1

∴x2+x1=2x1+
2
λ
(x2-x1)?λ=2
(2)令y=F(x)=f2n-1(x)•fn(1-x)=x2n-1•(1-x)n,则
①当n=1时,y=x-x2,y′=1-2x,令y′=0,得x=
1
2
,x∈(-∞,
1
2
),y′>0
x∈(
1
2
,+∞),y′<0,所以,当x=
1
2
时,y极大=
1
4
,无极小值;
②当n≥2时,y′=-n(1-x)n•x2n-1+(2n-1)x(2n-2).(1-x)n=x2n-1.(1-x)n[(2n-1)-(3n-1)x]
令y′=0则x1=0,x2=
2n-1
3n-1
,x3=1且x1x2x3
①当n为正偶数时,随x的变化,y′和y的变化如下:
当n为正偶数时,随x的变化,y'y的变化如下:
x (-∞,0) 0 (0,
2n-1
3n-1
2n-1
3n-1
2n-1
3n-1
,1)
1 (1,+∞)
y' + 0 + 0 - 0 +
y 极大值 极小值
所以当x=
2n-1
3n-1
时,y极大=
(2n-1)2n-1?6?1nn
(3n-1)3n-1
;当x=1时,y极小=0.…(7分)
点评:该题考查函数的求导公式,和数学归纳法的使用,注意画图,有点难度
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、已知定义在实数集上的函数y=f(x)满足条件:对于任意的实数x,y,f(x+y)=f(x)+f(y),且x>0时,f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)证明:f(x)是奇函数;
(3)证明:f(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数y=f(x)满足条件:对任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求证:f(x)是奇函数,
(3)举出一个符合条件的函数y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数fn(x)=xn,(x∈N*),其导函数记为fn′(x),且满足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2为常数,x1≠x2.设函数g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求实数a的值;
(Ⅱ)若函数g(x)无极值点,其导函数g′(x)有零点,求m的值;
(Ⅲ)求函数g(x)在x∈[0,a]的图象上任一点处的切线斜率k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数f(x)满足xf(x)为偶函数,f(x+2)=-f(x),(x∈R) 且当1≤x≤3时,f(x)=(2-x)3
(1)求-1≤x≤0时,函数f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的偶函数y=f(x)在区间(0,+∞)上是增函数,那么y1=f(
π
3
)
y2=f(3x2+1)y3=f(log2
1
4
)
之间的大小关系为(  )

查看答案和解析>>

同步练习册答案