精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(
1
3
x+φ)(x∈R,-
π
2
<φ<0)图象上一个最低点M(-π,-2)
(Ⅰ)求f(x)的解析式;
(Ⅱ)设α,β∈[0,
π
2
],f(3α+
π
2
)=
10
13
,f(3β+2π)=
6
5
,求cos(α+β)的值.
分析:(I)把点M(-π,-2)代入,利用所给角的范围即可得出;
(II )代入并利用平方关系和两角和的余弦公式即可得出.
解答:解:(I)把点M(-π,-2)代入得-2=2sin(
1
3
×(-π)+φ)

sin(φ-
π
3
)=-1
,∵-
π
2
<φ<0
,∴-
6
<φ-
π
3
<-
π
3

φ-
π
3
=-
π
2
,解得φ=-
π
6

f(x)=2sin(
1
3
x-
π
6
)

(II)f(3α+
π
2
)=2sin[
1
3
(3α+
π
2
)-
π
6
]
=2sinα=
10
13
,∴sinα=
5
13

α∈[0,
π
2
]
,∴cosα=
1-sin2α
=
12
13

f(3β+2π)=2sin[
1
3
(3β+2π)-
π
6
]
=2sin(β+
π
2
)
=2cosβ=
6
5

cosβ=
3
5
,∵β∈[0,
π
2
]
,∴sinβ=
4
5

∴cos(α+β)=cosαcosβ-sinαsinβ=
12
13
×
3
5
-
5
13
×
4
5
=
16
65
点评:考查三角函数的图象与性质、同角三角函数的关系、诱导公式、和角公式;考查基本运算能力、数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案